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Publisher's Note

As we all know, Ramakrishna Mission Vidyamandira is
celebrating the Platinum Jubilee this year. As an integral part
of the celebration, each department is organizing a National /
International level seminar. I am happy to note that teachers
and students of the Dept. of Mathematics worked hard to
make the departmental seminar, a UGC-sponsored one, a
grand success and that now the proceedings of the seminar are
being published in the form of a booklet. I congratulate each
and every member of the faculty, honorable guest-speakers,
the young research scholars who presented papers and all the
members of the non-teaching staff who assisted in every

possible way in bringing out this volume.

Swami Shastrajnananda



Introductory Words

Kartick Chandra Pal
Head, Department of Mathematics
Ramakrishna Mission Vidyamandira

“The Mathematics are distinguished by a particular privilege,
that is, in the course of ages, they may always advance and
can never recede.’ “ said Edward Gibbon in his celebrated
magnum opus ‘The History of the Decline and Fall of the
Roman Empire’. And never was this advancement more rapid
and spectacular than in our age of high-speed computers.
Today, an ardent student of Mathematics can afford to remain
oblivious of these advancements only at the grave risk of
stagnation. Indeed, in a bid to surveying the current
developments in certain areas of Mathematics, Ramakrishna
Mission Vidyamandira, in collaboration with ISI, Kolkata,
hosted a two-day national seminar (UGC-Sponsored) on
‘Recent Developments in Mathematics and its Applications’.

The participants in this seminar were prominent specialists in
their fields. Their respective presentations were eminently
thought- provoking. Mention may be made of some of these
topics such as ‘Syzygies and Betti numbers of curves’ by
Prof. B.N. Mondal, ‘Young’s old theorem revisited’ by Prof.
Alok Goswami, ‘Applications of Gothendick Inequality in
Operator Theory by Prof. Gadadhar Misra etc. In essence, the
strength of these illuminating lectures lay in their kindling in
students and teachers alike the spirit to explore newer vistas of
Mathematics.

Ramakrishna Mission Vidyamandira is pleased to bring out
this volume containing the proceedings of the seminar. We
hope the perceptive readers would find this collection
enriching,

1 The History of the Decline and Fall of the Roman Empire - Vol V, page 269



CONTINUITY OF A REAL VALUED FUNCTION : AN INSIGHT

KALLOL PAUL
DEPARTMENT OF MATHEMATICS
JADAVPUR UNIVERSITY

ABSTRACT. Given a subset A C R can we construct a function f : R — R such that f is
continuous exactly on A? We illustrate with examples to see how does A look like. The main
theme of this lecture is to completely characterize the continuity set A.

1. PRELIMINARY NOTIONS

Let R denote the set of real numbers, A C R and f: A — R is a given function. Consider
S={zxe€A: [ iscontinuous at z} and D = {z € A: f is discontinuous at z}.

Then our aim is to study the nature of D and S i.e. the set of points of discontinuity and continuity.
If we consider the polynomial functions, exponential functions, trigonometric functions sine, cosine
then we know that the set of continuity is the domain of the function, which may be whole of R,
accordingly the set of discontinuity is the empty set. We have seen examples of functions which are
discontinuous at one or more points like the step functions. We also have the example of Thomae
function f: R — R

f(x) = 0, x is irrational
= 1l z=0

+m
= 1/n, z= —m,m,ne N, with ged(m,n) =1
n

where f is continuous only at the irrationals.

Surprisingly enough we have never come across a real valued function which is continuous only at
the rationals! Now student may think in two ways, either this is going to be a very complicated
function or such a function does not exist. By the end of this lecture we will come to know the
answer.

The question that we raise is that suppose we are given a subset S of R, then can we find a function
f R — R such that f is continuous only on S.

We first look at some examples to see how does S or D look like?

Example 1. Let f : R — R be defined by

flx) = xsinl, x#0
xT
= 0

Then D = ¢ and S =R.
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Example 2. Let f: R — R be defined by

flz) = -1, 2<0
= 1, z>0
Then D = {0} and S =R —{0}.
Lo
0.5
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Example 3. Let f: R — R be defined by
flz) = 0, z<1
= 1, 1<z<?
= 2, x>2
Then D = {1,2} and S =R — {1, 2}.
Example 4. Let f : R — R be defined by
flz) = 0,z<1
= 1, 1<z<2
= 2, 2<x<3

= k-1 k—-1<z<k
= k, x>k

Then D = {1,2,...k} and S =R — {1,2,... k}.
Example 5. Let f: R — R be defined by
flz) = 0, z<1
= n,n<z<n+l, neN
Then D =N and S =R —N.
Example 6. Let f: R — R be defined by

flz) = n,n<z<n+l,nel
Then D=7 and S =R —Z.
2 —

10 —
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Example 7 (Thomae function). Let f: R — R be defined by

f(x) = 0, x isirrational
1, z=0

=+
= 1/n, z= —m,m,n € N, with ged(m,n) =1
n

Then D = Q and S = Q°.

Example 8. Let f: R — R be defined by
f(x) = sinz, x is rational
= cosx, x is irrational

Then S = {3(4n + )7, n € Z}. Thus S is a countable discrete subset of R so that the set of

., e, 10fes,  aoveo, o

PR . JosfLc . .
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discontinuity D is an uncountable dense subset of R.
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Example 9. Let B = {z : —k < x < k} and consider f: R — R be defined by

=
&
I

sinz, t €QNB
cosz, * €Q°NB
= 1, z€eQnB°

-1, 7€ Q°N B

Then f is continuous at finitely many points of the form v = %(4n + 1)w € B. Thus S is o finite

Poeoesesscsescsccssse

.
.
.
.
.
.
. et
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.
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subset of R so that the set of discontinuity D is the whole R except finitely many points.
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Example 10. Let f : R — R be defined by
f(=)

r, r€Q
= -, x€Q°

Then D =R — {0} and S = {0}.

Example 11. Let f : R — R be defined by

flz) = 1,2€Q
= -1, z€Q°

Then D =R and S = ¢.

©00000000000000000000000000000$000000000000000000000000000000




Continuity of a real valued function : an insight

From the above examples it follows that the set of points of discontinuity may be finite, countably
infinite, whole of Q, whole of R. Looking at example 6 we see that there exists a function con-
tinuous on irrationals but we did not give an example of a function which is continuous exactly
on the rationals. The question is whether there exists a function which is continuous only at the
rationals. To answer the question we need to talk of Gs and F, set. We first mention some basic
definitions.

Open set : A subset G of R is said to be open iff for each x € G there exists d, > 0 such that
(x — bz, +6,) CG.

Closed set : A subset F of R is said to be closed iff F' contains all its limit points. A real number
x is said to be a limit point of F' iff for each § > 0

((xfé,eré)f{x})ﬁF;éqb.

Equivalently a set F' is closed iff its complement is open.

Gs set : A set A C R is said to be a Gs set iff it can be written as countable intersection of open
sets.

F, set : A set A C R is said to be a F, set iff it can be written as countable union of closed sets.
Remark. Clearly every open set is a Gg set and every closed set is a Fj; set. Also we can show
that every open set is a F, set and every closed set is a G5 set.

Let F be a closed set. For each n € N let Gy, = Uzep(x —1/n,z + 1/n). Then each G, being
arbitrary union of open sets is an open set. We claim that F = NpenGyp so that F becomes a
Gs set. Clearly F C NpenGyp, for the converse part let z € NuenGp. Let 6 > 0. Then there
exists ng € N such that 1/ng < é. Now z € Gy, and so z € (z — 1/ng,x + 1/ng) for some = € F.
This shows that (z —d,z + &) contains some element of F so that z € F. Thus F is a Gs set. As
complement of a G5 set is F,; set and vice versa so we can say that every open set is a Fy; set.
Dense set : A subset D of R is said to be everywhere dense or dense in R if D = R i.e. if every
point of R is either a point of D or it is a limit point of D. Thus if x is a real number then either
x € D or there exists a sequence {x, } C D such that z,, — 2 as n — 0.

Nowhere Dense set : A subset D of R is said to be nowhere dense in R if Int (D) = ¢ i.e. if
there exists no open interval (z — 6,z 4 6), & > 0 such that (z — 6, + &) C D. This is equivalent

to saying that (D) is dense in R i.e. (D)° =

As for example the set of rational numbers Q and the set of irrational numbers Q¢ are dense in R
whereas the set of natural numbers N and the set of integers Z are nowhere dense in R.

It is easy to verify that a closed set is nowhere dense iff its complement is everywhere dense.
Category I: A set A C R is said to be of 1st category or category I iff it can be written as
countable union of nowhere dense sets.

Category IT: A set A C R is said to be of 2nd category or Category II iff it is not of 1st category.
It is easy to verify that a subset of a 1st category set is 1st category and a superset of 2nd category
set is 2nd category. Null set, finite sets and countable sets are all examples of 1st category sets
whereas we will see later that R is a set of 2nd category. So in a sense we get a feeling that 1st
category sets are somewhat “small” whereas 2nd category sets are somewhat “big”.

Please note that all the above notions can be defined in a metric space (X,d) by considering the
open ball Bs, (x) instead of open intervals (z — 84,z 4+ d,) and can also be defined in a topological
space by considering open sets instead of open balls.

2. BAIRE’S THEOREM
‘We now state and prove Baire’s theorem for real numbers.

Theorem 1 (Baire’s theorem for real numbers). Suppose {G, : n € N} be a countable
collection of dense open subsets of R. Then NypenGy, is also dense in R. Hence R is of 2nd category.

Proof. Let G = NpenGp. We want to show that G is dense in R i.e. for each € R and for each
r>0, (x—r,x+7r)NG#¢.




Continuity of a real valued function : an insight

As Gy is dense in R so (x —r,z+r) NGy # ¢. Let 1 € (x —r,z + r) N G;1. By the property of
openness of (z —r,z + r) and G there exists 7’ > 0 such that

(z1 =721 +7") C(x—r,z+7)NGy.
Then we can find r; < 7’ such that
[r1—ri, 21 +m] C (1 —r o +r) C(z—rz+7) NGy
Without loss of generality we can assume that r; < 1. Next consider the open interval (z1 —r1, 21+
r1). As Gy is dense in R so (z1 —r1, 1 +71) N G2 # ¢. As before we can find zo € R and ro < 1/2
such that
[wg — 7o, 39 +12] C (w1 — 71,21 +71) N G

Proceeding in this way we obtain a sequence {z,} C R and r,, < 1/n such that

[Tn = Tny@n + 0] C (Tpo1 = Tuo1,Tn1 + 7 1) NG VR €N,

Thus [z1—r1, 21471 D [X2—r2, T2+72] D ... D [Tne1—Tn—1, Tne1+7n—1] D [Tn—Tn, Tn+rn] D ...
is a nested sequence of closed and bounded intervals in R with diameters tending to zero. So by
Cantor’s nested interval theorem we get a unique point zg € Npen[Tn — Tn, Tn + 4.

Clearly zg € G as [z, — T, Tp +7n] C Gy, YR € N Also 29 € (z — 71,2+ 7) a8 [T, — Ty, Ty + 7] C
(x—r,z+r)VneN.

Thus z¢ € (x —r,z+7) NG so that (x —r,z+ 1) NG # ¢. Hence G is dense in R.

For the next part if possible let R be of 1st category. Then R can be written as
R=U;L By,
where each B, is a nowhere dense subset of R. Then we have
R=U2,B, CU2, B, CR

so that

R=U2,B,.
Using De’Morgan’s rule we get
¢ =021 (Bn) ...... (1)
For each n € N, B, is a nowhere dense closed set and so (B,],)" is dense open subset of R. Thus by

the result obtained in the first part we get N2, (B,)¢ is dense in R. This is a contradiction to (1).
Hence R is of 2nd category. This completes the proof.

The theorem in the same way can be proved for metric spaces which states that every complete
metric space is of 2nd category.

Theorem 2 (Baire’s theorem for metric spaces). Every complete metric space is of 2nd
category.

Proof. The proof is exactly the same with the notion of open and closed intervals being replaced
by open and closed spheres and using Cantor’s intersection property which states that “If
(X, d) is a complete metric space and {F, : n € N} is nested sequence of non-empty closed subsets
of X such that diameters of F, tends to 0 as n — oo then N2, F,, is non-empty and contains
ezactly one point.”

One can also prove Baire’s theorem for topological spaces which states that a locally compact
Hausdorft topological space is of 2nd category.

Theorem 3 (Baire’s theorem for topological spaces). A locally compact Hausdor{f topological
space X is of 2nd category.

10
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Proof. We show that if {G,, : n € N} is a countable collection of dense open subsets of X then
G = NpenG,, is also dense in X.
Let Up be an arbitrary open set in X. Then as G is dense in X so UpN Gy # ¢. Let y € Uy N G;.
Then there exists an open set U, containing y such that U, C Uy N G1. As X is locally compact
Hausdorff so we can find an open set U; such that U; U, CUyNGy and y € Uy, U, is compact.
Now consider the open set U;. Then Uy NGy # ¢ and as before there exists an open set Uy such
that U, is compact and
Uy, c Uy NGs.

Thus we get a sequence of compact neighbourhoods {U, } such that

UyoU DUy Do
and U, C G,, Vn € N.
As U, is compact and {U,} satisfies finite intersection property so N2, U,, # ¢ by the property
of a compact space which states that “ A topological space X is compact iff for every collection of
non-empty closed subsets of X satisfying finite intersection property has a non-empty intersection”.
So

UoN (ML Un) # 4.
As U, € G, ¥n € N so it follows that G'N Uy # ¢. Thus G is dense in X.
The remaining part follows as before.

3. APPLICATION OF BAIRE’S THEOREM.

As an application of Baire’s theorem we first show that there does not exist any function f : R — R
such that f is continuous exactly at the rational points.
Theorem 4. Let f : R — R. Let D be the points of discontinuity of f. Then D is an Fy-set in
X and points of continuity of f is a Gs-set.
Hence there can’t exist any f : R — R which is continuous on rationals and discontinuous at
irrationals.
Proof. Let G, = {Is5(z) = (z — 6,2+ &) : § > 0} denotes the collection of all open intervals
containing 2. Then the oscillation of function f at the point x, denoted as, wy(z), is the non-
negative real number defined by

w(z)=inf { sup |[f(u)—f(v)| }.

>0 "y vels(a)

Stepl. We claim that f is continuous at z € R iff wy(z) = 0.

Suppose f is continuous at z € R. Let € > 0 be arbitrary. Then there exists a § > 0 such that
ly—z[<d  =I|fly) —fl2)| <e
Then u,v € Is(z) = |f(u) — f(v)] < 2

= sup [f(u) — f(v)] < 2e
wwels(x)

Thus wy(z) = inf { sup |[f(u)— f(v)|} < 2
’ >0 "y wels(a)
As € > 0 is arbitrary so we get wy(z) = 0.
Conversely if wy(x) = 0 then for a given € > 0 there exists § > 0 such that
sup ) [f(u) = f(v)] <e.

wwels(x

Thus |y — 2| <46 = |f(y) — f(z)| < € and hence f is continuous at = € R.

Step2. We claim that the set of points of continuity is a G5 set.

11
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For each n € N we define D,, = {z € R : wy(z) > 1/n}. From step 1 it follows that f is
discontinuous at = € R iff wg(x) > 0 and so we get D = U2, D,,. To show that D is a F, set it is
sufficient to show that for each n € N, D,, is a closed set.
Let ¢ D,. Then wy(z) < 1/n and so there exists § > 0 such that
sup | f(u) — f(v)| < 1/n.
wwels(x)
Now for each z € Is(x),z # x let &' = min{|z —x — 4|, |z —x + 4§}
wr(z) < sup [f(u) = f(v)| < sup [f(u) = f(v)] <1/n.
wwel}(2) wwels(x)
This shows that © € Is(z) C (D,)¢ so that (D,,)¢ is an open set and hence D,, is a closed set.
Thus the set of points of discontinuity is an Fy set and so the set of points of continuity is a G5
set.

Step3. We claim that Q is not a Gs set.

If possible let
Q=n52,G,, whereeach G, isopenin R.
Then for each n € N, Q € G,, and so Q = G,, = R. So each G,, is dense in R and hence each
(Gr)¢ is nowhere dense in R.
Again Q being countable we can write

Q={z1,22,...,Tp,...}

where each {z,,} is nowhere dense closed set. Thus

R=QUQ" = (3L {zn}) U (U (Gn)%).
This shows that R is a countable union of nowhere dense sets and it contradicts the fact that R is
of 2nd category.
Thus there does not exist any function f : R — R such that { is continuous exactly at the rational
points.
An obvious corollary to the above theorem is the following one.

Corollary 1. If A is a countable dense subset of R then there does not exist any function f :
R — R such that f is continuous exactly on A.
The next question that arises is that

Exercise 1. If A is a countable dense subset of R then can we always construct a function f :
R — R such that f is discontinuous exactly on A?
Solution. As A is countable then we can write A = {z1,z2,...,2Zy,...,}. Define ¢ : R — R by

¢(x) = 0, 2<0

= L,z>0
Then ¢ is discontinuous only at z = 0. Let ) ¢, be a convergent series of positive real numbers.
Now consider the function f : R — R defined by
F@) =" cn bl —zn).

As 0 < ¢(z) <1 and ) ¢, is convergent so the function f is well defined.
We first show that f is discontinuous at each of z,,. Choose € < ¢,. Consider § > 0, however small
it may be. Then

f(@n +08) = fan) Z cn
and so f fails to be continuous at z,. Again from the property of uniform convergence of series of
continuous functions it follows that the sum function f(z) is continuous at all other points.

12
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Thus f is discontinuous exactly on A. This completes the proof.

‘We proved that the set of points of continuity of a function f : R — R is a G5 set. Now the
question arises that given a Gs set A can we find a continuous function f : R — R such that f is
continuous exactly on A?

Exercise 2. Let A be a Gs subset of R. Then there exists a function f : R — R such that f is
continuous exactly on A.

Solution. Let A = ﬂ:ll G, where each G, is open in R. Consider Uy = Gy, Uz = G1 N
G, ...,U, = G1NGaN...Gy. Then {U,} is a decreasing sequence of open sets with A = (°7, U,,.
‘We have

R=AUA =AU (|JUS) where Uf CUS C...CUSC....

n=1

Define f : R — R by

flz) = 0,z€A
= 1, zeU;NQ
= -1, z€U{NQ°

1 c c
= 7 ze (U5, —Us)NQ

1 c c C
= TuIT z € (Upy —Up)NQ

It is easy to verify that f is discontinuous on each of US and so f is discontinuous on A¢. We next
show that f is continuous on A.

Let z € A and x, — . If possible let {f(z,,)} does not converge to f(x). Then there exists € > 0
and a subsequence {f(z,, )} such that |f(zy, )| > € Vk € N. By Archimedean property there exists
r € N such that 1/r < e. This shows that |f(2n,)| > 1/r Vk € N and so from the construction of
function f it follows that z,, € US ;. But z ¢ US_; and so it contradicts the fact that US_; is
closed. Hence f(z,) — f(z) and so f is continuous at .

Thus f is exactly continuous on A.

Acknowledgement. I thank Sourav Hait, now a Research scholar at IISc Bengaluru, for helping
me in preparing this lecture.
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Continuity of Thomae function
Let f:R — R be defined by
f(x) = 0, x is irrational
= 1l z=0

+
1/n, = —m,m,n € N, with ged(m,n) =1
n

Then D = Q and S = Q°.

‘We here show that Thomae function is discontinuous on rationals and continuous on the irra-
tionals. First we show that f is discontinuous at rationals.
Let z = % € Q. Then {z,}(zp, =z + ‘/Ti) is a sequence of irrational numbers converging to = but
the sequence {f(z,)} does not converge to f(z) = {11 and so f is not continuous at z. Alternatively
for ¢ € N we can find k£ € N by Archimedean property such that k% > 1ie., kl < % Let € = kl
Then for é > 0, however small it may be, we get

1
yeQ, ly—z[<dbut | fy) - flz) |=(—1>€-

This shows that f is not continuous at x € Q.
Next we check that f is continuous at irrationals. Let £ be an irrational number. To prove
continuity of f at £ we see whether for given € > 0 there exists § > 0 such that

lz—¢l<d=| f(z) - f§)I<e
By Archimedean property there exists & € N such that % < e. Suppose z € R such that | z —¢ |< kl
If o is irrational then | f(z) — f(£) |= 0 < €. What happens if = is rational? For m € N consider
the set
S = {4 n e NU{0}& | 2% — ¢ < 1y,
" m m k

Then it is easy to check that each S, is finite. In fact, | 2 — & |< kl if 7% <L —_f< kl ie.

m

ifmE—1) <n<m@+1) Again| —2 —&[< Lifm(—¢ — 1) <n < m(—€£+ 1), Clearly

14



Continuity of a real valued function : an insight

such number of n’s are finite. Now choose 0 < § < kl such that (£ —46,£ +48)N S, = ¢ for each
r=1,2,... k. Then for rational numbers x € (£ =45, +6) we get | f(z) — f(§) |=| f(z) |< } <e.
Thus f is continuous at irrationals.

DEPARTMENT OF MATHEMATICS, JADAVPUR UNIVERSITY, KOLKATA 700032, INDIA

E-mail address: kalloldada@gmail.com
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A NOTE ON MINIMAL PRIME IDEALS IN C([0,1])

Bikram Banerjee
Department of Mathematics, Ranaghat College,
Ranaghat, Nadia, W.B 741201, India
email address: pbikraman@rediffmail.com

Abstract: Assuming SN\ N contains P-points (8N is the Stone-Cech com-
pactification of N) it has been shown that if f,g € C([0,1]) where 0 < f < g,
g € My, ={h € C([0,1]) : h(p) = 0} for some p € [0,1] and there exists an open
set U containing p such that g vanishes nowhere on U except p then there is a
minimal prime ideal @ contained in M, such that Q(g) divides Q(f). We have
also proved that if for every open set U containing p, g vanishes at infinitely
many points of U as well as g does not vanish at infinitely many points of U then
there exists a minimal prime ideal @ contained in M, such that Q(g) divides
Q).

Keywords: Tychonoff spaces, valuation domain, minimal prime ideals,
rings of real valued continuous functions.

AMS Subj. Class: 54C40, 06F99.

1 Introduction

Throughout, C(X) denotes the ring of real valued continuous functions on a Ty-
chonoff space X with usual pointwise ring and lattice operations. The notation
and terminology of the Gillman-Jerison text [4] will be used almost everywhere.
A prime ideal P of C(X) is called valuation prime if C(X)/P (residue class ring
of C(X) modulo P) becomes a valuation domain i,e. whenever 0 < f < g mod
P, 3h € C(X) such that f —hg € P. Indeed every maximal ideal of C(X) is
valuation prime. It is known that when X is an F-space (X is called an F-space
if every finitely generated ideal in C(X) is principal), every prime ideal of C(X)
is valuation prime. Now if P is a valuation prime ideal of C(X) and Q is a
prime ideal of C'(X) containing P then C'(X)/Q becomes a homomorphic image
of C(X)/P and as the later is a valuation domain, consequently Q becomes
valuation prime. On the contrary if Q is contained in P then there is no easy
way to tell whether Q is a valuation prime ideal. Incidentally it was shown
in [3]that there is a non maximal valuation prime ideal P of C(8(N x aN))
[oN = NU {oo} is the one point compactification with 'oo’ be the point of in-
finity and BX denotes the Stone-Ceech compactification of X] while there exists
a prime ideal Q ; P which fails to be valuation prime.

If ¥ is a free ultrafilter on N then Py = {f € C(aN) :z(f)\{oo} € ¥}, where
2(f) = {z € oN : f(z) = 0}, becomes a minimal prime ideal of C'(oN) contained
in the maximal ideal My = {f € C(aN) : f(co) = 0} and the correspondence
¥ — Py is a bijection between the class of all free ultrafilters on N onto the
class of all minimal prime ideals of C'(aN) contained in My, (14G,[4]). It was
shown in [2] that a minimal prime ideal Pg of C(aN) is valuation prime if
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and only if ¥ converges to a P-point in SN\ N (p € X is called a P-point if
every real valued continuous map on X becomes constant on a neighborhood
of p). Now whether SN \ N contains a P-point is undecidable in ZFC and
consequently whether C(aN) contains a minimal prime ideal contained in M,
which is valuation prime is undecidable in ZFC. In [1] the assumption that
C(aN) contains a minimal valuation prime ideal contained in My, is denoted
by Qasv axiom and whether every maximal ideal M), = {f €C([0,1]): f(p) = 0}
of C([0,1]), p € [0,1], contains a minimal valuation prime ideal assuming Qasv
axiom remains an open problem. In this paper we have shown (if Qasv axiom
holds) that if f,g € C([0,1]) where 0 < f < g, g € M, for some p € [0,1]
and there exists an open set U containing p such that g vanishes nowhere on
U except p then there is a minimal prime ideal @ contained in M,, such that
Q(g) divides Q(f). We have also proved that if for every open set U containing
p, UN z(g) as well as U N coz(g) both are infinite then there exists a minimal
prime ideal @ contained in M), such that Q(g) divides Q(f).

2 Preliminaries and some necessary tools

If X is a topological space and f € C(X) then the set {z € X : f(z) = 0} is
called the zero set of f and denoted by z(f) and coz(f) denotes X \ z(f).

2.1 A) The collection of all maximal ideals of C(X) is given by {M? : p €
BX}, where M? = {f € C(X) : p € clgxz(f)} (Gelfand-Kolmogoroff theorem).
It is customary to denote M? by M, if p € X. In particular, if X is compact
then every maximal ideal of C(X) is of the form M, = {f € C(X) : p € z(f)},
for some p € X.

B) If P is a prime ideal of C(X) then the residue class ring C'(X) modulo
P i,e. C(X)/P becomes totally ordered where P(f) = 0 means 3g € P(f) such
that ¢ = 0 on X.

C) Every prime ideal P of C(X) is contained in a unique maximal ideal MP
and contains the z-ideal O? = {f €C(X): p € intclgxz(f)}. for some p € 8X.
It is customary to denote OP by O, if p € X. Moreover O is the intersection
of all minimal prime ideals of C(X) contained in MP.

D) Every maximal as well as minimal prime ideal of C'(X) is a z-ideal (An
ideal I of C(X) is called a z-ideal if g € I <=u(g)e Z(I) = {z(f): f € I}).

E) Every member of a minimal prime ideal P of C(X) is a zero divisor and
hence if f € P then intz(f) # 0.

2.2 The operation v:

In [5] Kohls introduced a one-one correspondence 7y between prime z-ideals
of C(X) contained properly in a maximal ideal M, where p is a non isolated
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Gs-point of X and certain prime z-ideals of C(X \ {p}). In the study of the val-
uation prime ideals the operation 7 plays a major role. Let p be a non isolated
Gs-point of X and i be the inclusion mapping from X \ {p} into X. Now there
exists a largest subspace X of 3(X \ {p}) on which i admits a continuous (def-
initely unique) extension ¢ onto X and consequently the set ¢~1(p) becomes
nonempty. The following proposition describes in clear terms how the above
mentioned bijection y on the family T of all prime z-ideals @ of C(X \ {p}) such
that Z(Q) converges to a point of ¢~!(p), onto the family A of all non maximal
prime z-ideals of C(X) contained in M, is set:

Proposition: For any Q € T, ¥(Q) is that z-ideal of C'(X) whose corre-
sponding z-filter Z(y(Q)) is given by
Z0(Q) = {dxY Y € Z(Q)} = {Y U{p} : Y € Z(@)}.

Tt is worth mentioning in this context that for any zeroset Z in Z(Q), clxZ =
Z U {p} is a zeroset in X — a fact settled by Kohls in his paper [5].Furthermore
for @ € T, Q is maximal in C(X \ {p}) if and only if y(Q) is an immediate
prime z-ideal predecessor of M, in C(X).

2.3 P(p) z-filters:

The idea of a P(p) filter was given by Cherlin and Dickmann in 1986 [2]. Let
X be a space, p € X and J be a filter of subsets of X. $ is called a P(p) filter
if for every f € C(X \{p}), 0 = f = 1, there exists Y € S such that lim, ., f/y
exists.

It is clear from the above definition that any filter containing a P(p)-

filter is again a P(p)-filter. The interrelation between valuation prime ideals of
C(X) and P(p) z-filters on X is reflected by the following proposition:

Proposition: Let P be a non maximal valuation prime ideal of C(X) con-
tained in a maximal ideal (definitely unique) M, for some p € X. If Q is a
minimal prime ideal contained in P then Z(Q) becomes a P(p)z-filter(2.2.2 [2]).

As already mentioned that any filter containing a P(p)-filter is again a P(p)-
filter also every prime ideal of C'(X) always contains a minimal prime ideal,
therefore if P is a non maximal valuation prime ideal of C'(X) contained in a
maximal ideal M, for some p € X; then Z(P) becomes a P(p) z-filter.

3 Main Results

By Qasv axiom we will understand the assumption that the ring C'(aN) con-
tains a minimal valuation prime ideal P contained in the maximal ideal M i,e.
P C M, is a minimal prime ideal such that C(aN)/P is a valuation domain.
We start with the following theorem:

Theorem 3.1 Let Qasv hold and p € [0,1]. Then there exists a non maxi-
mal valuation prime ideal @ of C([0,1]) contained in M.
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Proof. Let {z,}2; < [0,1] be a sequence of distinct elements converging
topand Y = {z,}5; U {p}. Clearly Y = oN. As Qasv holds, therefore there
exists a minimal ( non maximal ) valuation prime ideal P of C(Y) contained in
the maximal ideal {f € C(Y) : f(p) = 0}. Let ¢ be the restriction mapping of
C([0,1]) onto C(Y). As Y is compact therefore C-embedded in [0,1] and so ¢
is an epimorphism. Then clearly C([0,1])/¢ ™ (P) = C(Y)/P and as the latter
is valuation domain so also is the former and therefore Q = ¢~ !(P) becomes a
non maximal valuation prime ideal of C([0,1]) contained in M,,.

Remark: As every closed subset of a metrizable space is a zero set, there-
fore 3 g € C([0,1]) such that z(g9) = Y. Then g/y = 0 € P and consequently
g € i"}(P) = Q. But intp yz(g)= 0. Thus Q is not minimal in C([0,1]). Now
if T is a prime ideal of C([0,1]) properly contained in @, there is no easy way
to tell whether T also becomes valuation prime. One of the reasons behind it
may be the fact that the structure of prime ideals of C([0, 1]) is exceedingly rich.

Theorem:3.2 Suppose p € [0,1] and g € C([0,1]) is such that g = 0 on
[0,1] and g(p) # O or there is an open set U of [0,1] containing p such that
z(9)NU = {p}. If Qasv holds then there is a minimal prime ideal @ < M,, such
that whenever 0 < f < g, the coset mod @ of g divides coset mod @ of f.

Proof : Let X = [0,1]. We will prove this for p = 0 only. The case
with other maximal ideals M, of C'(X) with p # 0, can be dealt with analo-
gously. Let {z,,}5° < [0,1] be a convergent sequence of distinct elements with
limit 0. Clearly Y = {,,}3° U {0} = aN. As Qasv holds therefore 3 a mini-
mal (non-maximal)valuation prime ideal P of C(Y) contained in the maximal
ideal {f € C(Y) : f(0) = 0} of C(Y). Let ¢ be the restriction map of C(X)
onto C(Y') which is an epimorphism as Y being compact is C-embedded in X.
Clearly ¢~ !(P) becomes a valuation prime ideal of C'(X) contained in M. Let
Q C ¢~ Y(P) be a minimal prime ideal of C(X) and 0 < f < g; in particular
z(g) C z(f). Now if g(0) # 0 then Q(g) being a unit of C(X)/Q, becomes
invertible and so Q(g)/Q(f).

Now let g(0) = 0 and [0,a) be an open set of [0,1] containing 0 such that
g does not vanish anywhere on (0,a). Let b € (0,a); then g also does not
vanish on (0,b]. Again as ¢~!(P) is a non-maximal valuation prime ideal and
Q C ¢~ 1(P) therefore Z(Q) becomes a P(0) z-filter (proposition 2.3) . Now we
define a map h on (0,b] by h(z) = f(z)/g(x); clearly 0 < h < 1. As (0,0] is
closed in (0, 1] it is C*-embedded. Let hy € C*((0,1]) be an extension of h and
without loss of generality we can assume 0 < hy < 1. Now as Z(Q) is a P(0)
z-filter therefore there exists a member Z € Z(Q) such that lim, .o h1/Z exists.
Now [0,b] € Z(Q),Z € Z(Q) = [0,b]N Z € Z(Q). Again as limy—.oh1/Z exists
therefore limg_oh1/[0,b] N Z also exists and limy—oh1/[0,b]NZ = o (say). Let
us define A} : ZN[0,b] — R as follows: h}(0) = cand ki (x) = hy(z) f0<z <D
and x € Z. Thus h} becomes continuous on [0,b] N Z. As [0,b] N Z is closed
therefore h] admits an extension say h* € C(X). Now clearly if z € [0,b] N Z
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and z # 0 then h*(z) = hfi(z) = h(z) = f(z)/g(z) and h*(0) = . We further
recall that f(0) = ¢(0) = 0, hence f(z) = h*(z)g(z) on [0,b] N Z. Now as
[0,0] N Z € Z(Q), so we get a member of Z(Q) on which f = h*g and since Q
in minimal therefore it is a z-ideal. Hence Q(f) = Q(h*)Q(g) and consequently
Q(9)/Q(f).

Note: If 0 < Q(f) < Q(g) then there is no loss of generality in assuming
that 0 < f < g, because Q(f) = Q(0V f) and Q(g) = QO V fV g).

The following proposition which follows from the work of C.W. Kohls in
1958 (3.5, [5]) will be required for our last theorem.

Proposition 3.3 Let X be compact, p € X be a non isolated Gs-point
and let S be a sequence of distinct points of X \ {p} converging to p. Clearly
S U {p} =~ aw and let ¢ be the restriction mapping of C(X) onto C(S U {p}).
Now if P is a minimal ( non maximal ) prime ideal of C(S U {p}) then the
prime ideal ¢ ~1(P) of C(X) is the image by the map 7 of a maximal ideal MY
of C(X \ {p}) where ¢ € (X \ {p}) \ (X \ {p}) and therefore maximal among
prime z-ideals of C(X) properly contained in M,,.

Theorem:3.4 Let f, g € C([0,1]) such that 0 < f < g and g(p) = 0 for some
p € [0,1]. Also let for every open set U containing p in [0, 1], both U N 2(g) and
U N coz(g) be infinite. If Qasv holds then there exists a minimal prime ideal
@ C M, such that coset mod Q of g divides coset mod @ of f.

Proof: From the assumptions it follows that 3 a sequence {z, }3° C coz(g)
converging to p. Let Y = {2,}{° U {p}(= oN). and ¢ be the restriction of
C([0,1]) onto C(Y). As lasv holds therefore 3 a minimal (non-maximal) val-
uation prime ideal P of C(Y') contained in {h € C(Y) : h(p) = 0}. Clearly
¢~ 1(P) is a valuation prime z-ideal of C([0,1]) properly contained in M,. Now
as Z(g/Y) is finite ( in fact 2(g/Y) = {p} ) and every member of a (non
maximal) minimal prime ideal of C(aN) has an infinite zero set, therefore g ¢
¢ 1(P). Let X = [0,1] \ {p}. Now 3 a maximal ideal M? of C(X) for some
g € BX \ X such that @’1(1’) = y(M?), where Z(y(M?)) = {Cl[(]’l]Z 1 7 €
Z(M9)} = {ZU{p}: Z € Z(M9)} [By proposition 3.3]. But as z(g) \ {p}
is a zero set of X and g ¢ ¢~ 1(P) C y(MY), therefore z(g) \ {p} ¢ Z(M?)
[Because z(g) \ {p} € Z(M?) = z(9) € Z(y(M)) = Z(¢~'(P)) = g € o~ }(P)
as ¢~ !(P) is a prime z-ideal of C([0,1]) — which is a contradiction]. Hence by
Gelfand Kolmogoroff theorem ¢ does not belong to clgx (z(g)\{p}). Therefore
3 a zero set neighborhood V of ¢ in 8X such that V N (z(g)\{p}) = 0. Clearly
VNX € Z(07) and consequently we get a member VNX (= Z, say) of Z(O9) on
which g does not vanish. Let Q' € MY be a minimal prime ideal of C'(X). Then
Y(Q') = Q (say) becomes a minimal prime ideal of C([0,1]) (as v is a bijection
and order preserving in set inclusion sense ) contained in y(M9)(= ¢~ 1(P))
where Z(v(Q")) = {clpyZ : Z € Z(Q")} = {ZU{p} : Z € Z(Q')}. We will
show Q(9)/Q(f). Now Z € Z(0%) = Z € Z(Q') as O C Q' and this implies
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cipyZ = ZU{p} € Z(¥(Q')) = Z(Q). As g does not vanish on Z hence
we can define a map h(z) = f(z)/g(x) on Z. Clearly 0 < h < 1. As Z is
a zero set of X, therefore closed and C-embedded in X and consequently we
can get a bounded extension hy of h over X and without loss of generality we
take 0 < hy < 1. Again ¢~!(P) is a non maximal valuation prime ideal and
Q is a minimal prime ideal contained in ¢~!(P). Hence Z(Q) becomes a P(p)
z-filter (proposition 2.3). Hence 3Z; € Z(Q) such that lim,_,, h1/Z; exists.
Now as Z U {p} € Z(Q) and Z; € Z(Q) therefore (Z U {p}) N Z1 € Z(Q). Let
(ZU{p})NZy = Z'. Thus lim,_,, hy/Z’ also exists and let lim,_., h1/Z' = a.
Now we define (h}/Z')(p) = a and (h}/Z')(z) = (h1/Z')(z) if © € Z' with
x # p and thus h}/Z’ becomes continuous on Z’. But as Z’ is a zero set of
[0,1] and hence C-embedded in [0,1] so h|/Z’ has an extension h* € C([0,1]).
Now if z € Z' and x # p then h*(z) = (h1/Z')(z) = h(z) = % and at © = p
f(p) = 0 = g(p). So f = gh* on Z'.Thus we get a member Z’ of Z(Q) on
which f agrees with gh* and as @ is minimal prime ideal of C([0,1]), therefore
a z-ideal; consequently Q(f) = Q(g) - Q(h*) ie. Q(9)/Q(f).
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Abstract

In this paper, we studied the location of recurrent critical point of a tran-
scendental meromorphic function f. We show that if @ is a recurrent point of a
transcendental meromorphic function f then either a is in Julia set of f or a is
in one of the rotational domains (Herman ring or Siegel Disc). Moreover if @ is
a recurrent critical point of f then a is in Julia set of f.

Keywords: Recurrent critical point, Julia set, Herman ring and
Transcendental meromorphic function.

1. Introduction

Let f: C — C be a transcendental meromorphic function. The iterates of f,
denoted by f", generate a dynamical system. The family {f"},,~¢ of functions
on a domain © C C is said to be normal in Q if every sequence of functions
in {f™},>0 contains a subsequence which converges either to a limit function
f # oo or to oo uniformly on each compact subset of 2. The set of points in a
neighborhood of which the sequence of iterates {f™},¢ is defined and forms a
normal family is called the Fatou set of f and is denoted by F(f). The Julia

set, denoted by J(f), is the complement of F(f) in C. The Fatou set is open
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and the Julia set is perfect. An introduction to the properties of these sets
can be found in [1]. A maximal connected subset of the Fatou set is called a
Fatou component. For a Fatou component U, Uy, denotes the Fatou component
containing fk'(U)A Fatou component U is called wandering if U,, # U, for all
n # m. We say a multiply connected Fatou component U surrounds a point

a € C if there exists a bounded component of ct-v containing a.

Definition 1.1. (Baker wandering domain) A Baker wandering domain is
a wandering component U of F(f) such that, for n large enough, U, is bounded,

multiply connected and surrounds 0, and f"(z) — 0o asn — oo for z € U.

Note that if f has a Baker wandering domain then all the Fatou components
including the Baker wandering domains are bounded. A Fatou component U is
called p-periodic if p is the smallest natural number satisfying U, € U. Peri-
odic Fatou components are of five types, namely Attracting domain, Parabolic

domain, Siegel disk, Herman ring and Baker domain.

Definition 1.2. A periodic Fatou component H is called a p-periodic Herman
ring if there exists an analytic homeomorphism ¢ : H — A = {z : 1 < |2| <

r,r > 1} such that ¢(fP(¢71(z))) = e®™*z for all z € A and for some o € R\Q.

Clearly, there are uncountably many fP-invariant Jordan curves in H. Each
such curve separates the two components of ¢ \ H. In Herman ring, recurrence
is a very natural thing. By definition of Herman ring, every point in the Herman
ring is recurrent point.

Herman rings have some interesting and significant properties. On Herman
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rings (as well as Siegel disc) the limit functions of the sequence of iterates
{f"} are non-constant which is not the case for other Fatou components. Also
Herman rings are doubly connected by definition whereas in case of other Fatou
component, (other than Siegel disc) the connectivity can be anything.

We call a point a € Ca singular value of f if for every open neighborhood
U of a, there exists a component V of f~(U) such that f : V — U is not
bijective. The singular values of a function play very crucial role in studying
the dynamics of the function. Denote the set of singular values of f by S(f).
This set is the closure of critical values and asymptotic values of f. A critical
value is the image of a critical point, that is, f(zy) where f’(z9) = 0. A point
aeCisan asymptotic value of f if there exists a curve 7y : [0,00) — C with
limy 00 ¥(t) = 0o such that lim;,o f(¥(t)) = a. A more general definition of
singular values is given below [2].

Forac Candr > 0, let D,(a) be a disk (in the spherical metric) and choose
a component U, of f~1(D,(a)) in such a way that U,, C Uy, for 0 < ry < ra.

There are two possibilities.

1. N,soUr = {z} for z € C : Then f(z) = a. The point z is called an
ordinary point if (i) f/(z) # 0 and a € C, or (ii) z is a simple pole. The
point z is called a critical point if f/(z) = 0 and a € C, or z is a multiple
pole. In this case, a is called a critical value and we say that a critical
point or algebraic singularity lies over a.

2. N,50Ur = ¢: The choice 7 — U, defines a transcendental singularity of

1. We say a transcendental singularity lies over a. The singularity lying
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over a is called direct if there exists r > 0 such that f(z) # a for all z € U,.
The singularity lying over a is called logarithmic if f : U(r) = D, (a)\ {a}
is a universal covering for some r > 0. A singularity is indirect if it is not

direct.

A value 2z € C is said to be an omitted value for the function Fif f(z) # 20
for any z € C. An omitted value is always an asymptotic value but converse
need not be true. It is clear that the singularities lying over an omitted value

are always direct.

Definition 1.3. (Baker omitted value ) An omitted value a € C of an entire
or meromorphic function f is said to be Baker omitted value, in short bov, if
there exists ro > 0 such that for all r satisfying 0 < r < ro, each component of

the boundary of f~*(Dy(a)) is bounded.

It follows that f~1(D,(a)) is infinitely connected and each component of
C\ f~YD,(a)) is bounded [3]. The bov is the only asymptotic value of the
function [3]. Consequently, the bov of an entire function must be co and the bov
of a meromorphic function is always finite.

In Section 2, we have discussed some preliminary definitions. Section 3 con-
tains the results about the location of recurrent critical point and their proofs.

In Section 4, some related results are discussed.

2. Some Definitions

Definition 2.1. w-limit set:

Let oo € C and f be a transcendental meromorphic function then w- limit set of
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o, denoted by w(c), is defined by
w(a) ={z € C: there exists a subsequence {ny} such that f™ (a) — z}

Definition 2.2. Recurrent Point:

A point ¢ in the complex plane is called recurrent point of f if ¢ € w(c).

The point which are not recurrent is called non recurrent point. From the
above definition of recurrent point, we can say if ¢ ¢ w(c) then ¢ is a non-
recurrent point. In [4] dynamics of the map z — exp(z)/z on the punctured
plane C* = C\ {0} have been studied. The w-limit set of z is equal to {0, 0c0}.In

particular, 0 and co are the only recurrent point for the above map.

Definition 2.3. Recurrent Critical Point:
Let ¢ be a critical point of f. Then c is called recurrent critical point of f if

c € wlc).

Definition 2.4. Recurrent Critical Value:
Let ¢ be a critical value of f. Then c is called recurrent critical value of f if

c € wlc).

3. Result and its proof

Lemma 3.1. Let U be either Attracting domain or Parabolic domain or Baker
domain or Wandering domain of a transcendental meromorphic function f. If

a € U then a is not a recurrent point of f.

Proof. Case-1: U is Attracting domain

Let @ € U be a point such that a is not an attracting periodic point. Let w be

26



the attracting periodic point. Then we will get a subsequence {ny} such that
f(a) = w as k — oo.

But f™ (a) — a never happens since a is not an attracting periodic point. Thus
a is not a recurrent point.

Suppose a be the attracting periodic point. Then there exists subsequence {n}
such that f™ (a) = a. But f™(a) » a i.e, forward orbit of a under {n;} does
not accumulate at a. So, a is not the limit point of the forward orbit. Thus if
a € U then a is a non-recurrent point.

Case-2: U is Parabolic domain

Proof is same as before.

Case-3: U is Baker domain

By definition of Baker domain U can not contain any recurrent point.

Case-4: U is Wandering domain

If U is Wandering domain then a € U can not be a recurrent point. Let there
exists {ny} such that f™*|U — b then we can prove that b € J(f). Suppose
b € F(f) then there exists a neighborhood of b where f is normal. Then bound-
ary of wg (wo be the domain such that wy = f~1(b) in the path in which f™|U
approaches to b ) goes to boundary of b under f. But dwg C J(f). Since J(f)
is completely invariant, dwg can not go to neighborhood of b which is in Fatou

set. Thus b€ J(f). Thus b ¢ U.

[m}

Therefore if some recurrent point of f lies in F(f) then the recurrent point
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must be in either Herman ring or Siegel disc of f. Then the following theorem

is obvious.

Theorem 3.1. Let a € F(f). Then a is recurrent point if and only if a is in

either Herman ring or Siegel disc of f.

Suppose a is a recurrent point of f then either a € J(f) or a is in one of the
rotational domains (Herman ring or Siegel disc).
Theorem 3.2. If a is a recurrent critical point of f then a is in Julia set of f.
Proof. Let Hy be a Herman ring or Siegel disc. If a € Hy then f : Hy — f(Ho)
is not one one since a is a critical point of f. But for any Herman ring or Siegel

disc Ho, f : Hy — f(Ho) must be one one. This is a contradiction. So a ¢ Hy.

Thus by previous result, @ is in Julia set of f. [m}

Lemma 3.2. If a is the Baker omitted value of f and also recurrent critical

value of f. Then a can not be in Herman ring or Siegel disc. Thus a € J(f).

Proof. Let Hy be a Herman ring or Siegel disc. If @ € Hj then all the components
of f~1(Hy) are unbounded since Hy contains an omitted value. Also from [5],
we have for any component of f~!(Hy), f is not one one. That is f : f~1(Ho) —
Hy is not one one. Thus Hp can not be a Herman ring or Siegel disc. Thus

a€ J(f). [m]

4. Conclusion

In [6] we have seen that
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Theorem 4.1. Let f : € — € be a rational function and " be the boundary
of a Siegel disk or a connected component of the boundary of a Herman ring.

Then there exists a recurrent critical point ¢ such that w(c) D 1.

Above result gives us a notion that recurrent critical point is more important
than non recurrent critical point for determining the dynamics. Theorem 4.1 is
true for rational functions. We will try to investigate that result of the Theorem
4.1 remains true for transcendental functions or not.

Suppose h € E has Baker wandering domain U then h has infinitely many
critical values [1] and oo is a limit function of {f"|y} by definition of Baker
wandering domain . By [7], co € (P(f))’. Now our question is

Question : If h € E has Baker wandering domain U then oo € w(c) for some

recurrent critical point ¢ or not ?
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Abstract

A topological manifold is a Hausdorff, second countable topological space, which
is locally euclidean. We can put compatibility condition on the charts of a manifold
to define smooth manifolds. Classification of manifolds is one of the fundamental
problem in topology and geometry. Low-dimensional manifolds are classified by ge-
ometric structure; high-dimensional manifolds are classified by surgery theory. For
example there is a unique connected 0-dimensional manifold, namely the point, and
disconnected O-dimensional manifolds are just discrete sets, classified by cardinality.
A connected 1-dimensional manifold without boundary is either circle(if compact) or
the real line(if not compact).

1 Introduction

For any finitely presented group, it is easy to construct a (smooth) compact 4-manifold
with it as its fundamental group. As there is no algorithm to tell whether two finitely
presented group are isomorphic(even if one is known to be trivial) there is no algorithm
to tell if two 4-manifolds have the same fundamental group.

This is one reason why much work on 4-manifolds just considers the simply-connected
case. The general case of many problem is already known to be intractable. The Freed-
man’s theorem says that all simply connected closed 4-manifolds can be classified upto
homeomorphism using intersection forms and Kerby-Siebemann invariant. Here we con-
centrate on intersection forms to classify the closed simply connected 4-manifolds up to
homotopy.

2 Few Results

Theorem 1 (Milnor, Whitehead) Two simply connected 4—manifold are homotopy
equivalence if and only if they have isomorphic intersection forms

Theorem 2 (Freedman)
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(a). Two simply-connected closed topological 4—manifold are homeomorphic if and
only if they have isomorphic intersection forms and the same Kirby-Siebenmann invari-
ent.

(b). Given any even unimodular symmetric bilinear form q over Z there is, up to home-
omorphism, a uuique simply connected topological 4—manifold with intersection form q.

(c). Given any odd unimodular symmetric bilinear form g over Z there are, up to
homeomorphism, precisely two simply connected 4—manifold with intersection form g one
of them has non-trivial Kriby-Siebemann invarient and therefore can not be given a smooth
structure.

So to classify simply-connected closed 4—manifolds, we need to know at least about
the intersection forms. Here we briefly study about intersection forms and calculate the
intersection form of some manifold.

3 Intersection forms

Definition 1 Given any closed oriented 4—manifold M , its intersection form is the sym-
metric 2—form defined as follows

Qu : HY(K;Z) x HX(M;Z) — 7
Qui(e, B) = (a— P)[M]

This forms is bilinear and is represented by a matrix of determinant £1.
For convenience, we will often denote Qs (e, 8) by o - 8. Further, we will identify with-
out comment a cohomology class o € H?(M;Z) with its poincare-dual homology class
o € Hy(M;Z).

For defining @) more geometrically, we will represent o and 8 from Hy(M;Z) by
embedded surface S, and Sg and then equivalently define Q (e, §) as intersection number
of S, and Sg

Qum(o, B) = Sa - Sg

Given a closed oriented 4-manifold M, we defined its intersection form as
Qum : Ha(MZ) x Hy(M;Z) = 7 Qu(e, B) = Sa - Sg,

where S, and 83 are any two surfaces representing the classes o and S.

Notice that, if M is simple-connected then Ho(M;Z) is a free Z-module and there are
isomorphisms Hy(M;Z) ~ @&mZ, where m = by(M). If M is not simple connected, then
Hy(M;Z) inherits the torsion of H1(M;Z), but by linearity the intersection form will al-
ways vanish on these torsion classes; thus, when studying intersection form, we can safely
pretend that Hy(M;Z) is always free. Here we will prove some lemmas
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Lemma 1 The form Q (e, B) = Sy - Sg on Ha(M;Z) coincides modulo poincare duality
with the pairing

Qu(a”,87) = (o' — B")[M]
on H*(M;7)

Proof : Given any class o € Ho(M;Z), denoted by a* its Poincare-dual from H2(M;Z;
we have a* ~ [M] = o. We wish to show that the pairing

Qu (e, 8) = (a* — £7)[M]

on H%(M,Z) defines the same bilinear form as the one defined above.We will use the
general formula(more often written Kronecer pairing as

(% — B%, [M]) = (o, " ~ [M])),
(o — B*)[M] = o*[8 —~ [M]], from which it follows that Qu (o, 8*) = o*[8], or
Qu(a”, B7) = a"[Sg] 1)

Therefore we need to show that

a*[Sp] = 54.58.

Since @ vanishes on torsion classes, it is enough to check the last formula including
the free part of H2(M;Z) into H2(M;R) and by interpreting the latter as the de Rham
Cohomology of exterior 2-forms.

Moving into de Rham cohomology translates cup products into wedge products and
cohomology/ homology pairing into integrations. We have for example,

Qu(e*, %) = /a*/\ﬁ* and  o*[Sg) = /a*dx

Sg Sg

for all 2-forms a*, B* € T(A2(1};)).

In this setting, given a surface S, one can find a 2-form o* dual to S, so that it is non-zero
only close to S,. Further, one can choose some local oriented coordinates {z1,z2,%1,¥2}
so that S, coincides locally with the plane {y; = 0;y2 = 0}, oriented by dz; A dzy . One
can then choose a* to be locally written as o = f(z1,22)dyr A dya, for some suitable
bump-function f on R?, supported only around (0,0) and with integral ng f=1

If Sg is some surface transverse to S, and we arrange that, around the intersection
points of S, and Sg, we have Sg described by {z; = 0;x2 = 0}, then clearly

/ at =8, Sg @)
Sp

with each intersection point of S, and Sg contributing =1 depending on weather dy; Adys
orients Sg positively or not.
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Unimodularity and Dual classes:

The intersection form @ is Z-bilinear and symmetric. As a consequence of Poincare
duality, the form Q) is also unimodular, meaning that the matrix representing @ is
invertible over Z. This is the same as saying that

detQ M = +1.
Unimodularity is furthe equivalent to the property that, for every Z-linear function f :
Hy(M;Z) — Z, there exists a unique o € Ho(M;Z) so that f(z) = a-z.
Lemma 2 The intersection form Qu of a 4-manifold is unimoduler.

Proof. The intersection form is unimoduler if and only the map

Qur - Ho(M;Z) — Homy(Ho(M;Z),7)
[0 e b e SO IR

is an isomorphism. We will argue that this last map coincides with the Poincare duality
morphism. Indeed, Poincare duality is the homomorphism

Hy(M;Z) — H2(M;Z)

o af

with a* characterized by a * N[M] = a. Assume for simplicity that Ho(M;Z) is free.If
not free, a similar argument is made on the free part H2(M;Z)/Ext(Hy(M;Z);Z) of
H?(M;Z),which is all that matters since Q; vanishes on torsion. Then the universal
coefficient theorem shows that we have an isomorphism

Hy(M;Z) = Hom(Hy(M;Z),Z)
o oz of(z]

Combining Poincare duality with the latter yields the isomorphism

Hy(M:Z) = Hom(Hy(M:Z),7Z)
a e oz

However, as argued in the preceding subsection, we have Qs (o,z) = o*[z], and therefore
the above isomorphism coincides with the map @ ;. That proves that the intersection
form @), is unimodular.

Further, the unimodularity of Q) s is equivalent to the fact that, for every basis {a1, ....., ap, }
of Hy(M;Z), there is a unique dual basis {81, ..., B} of Hao(M;Z) so that oy - S = +1
andai~ﬁj:0if'i7éj.

To see this start with the basis {aq,....., a;} In Ha(M;Z), pick the familiar dual ba-
sis {of, ...,k } in the dual Z module Hom(Hy(M;Z),Z), then transport it back to
Hy(M;Z) by using Poincare duality (or @) and hence obtain the desire basis {81, ..., Bm }-

34



Lemma 3 If M and N have intersection forms Qy; and Qn, then their connected sum
M # N will have intersection form

Quan = Qu ® Qn.

Proof. Since M° and N° can be viewed as M and N without a 4-handle (or a 4-cell),
and since 2-homology is influenced only by 1-, 2- and 3-handles, it follows that the 2-
homology of M# N will marely be the friendly gathering of the 2-homology of M and M,
intersections and all.

Invariants of intersection forms: To start to distinguish between the various pos-
sible intersection forms,we define the following simple algebric inveriants:

e The rank of Q);:
It is the size of Q)s’s domain,defined simply as
rankQyr = rank; H*(M;7),

or rank@ ) = dimgH?(M;R). In the other words, the rank is the second Betti number
bo(M) of M.

¢ The signature of Q;:

It is obtained as follows: first diagonalize Qs as a matrix over R ( or Q), separate the
resulting positive and negative eigenvalues, then subtruct their counts; that is

signQuy = dimH3(M;R) — dimH2(M;R)

where H3 are any maximal positive or negative-definite subspaces for Q. We can set
partial Betti numbers b = dimH2, and thus we can read sign Qu = b+ (M) — b= (M).

o The definiteness of Q) (definite or indefinite):

If for all non-zero classes o we always have Qyr(a,a) > 0, then @y is called positive
definite.

If, on the contrary, we have @ (e, ) < 0 for all non-zero o's, then @ is called
negative definite.

Otherewise, if for some a4 we have, @ (g, a1) > 0 and for some a— and we have
Qumla_,a ) <0, then Q) is called indefinite.

o The parity of Qs (even or odd):

If, for all classes &, we have that Qp/(e, &) is even, then @y is called even. Otherwise,
it is called odd. Notice that is enough to have one class with odd self-intersection for Qs
to be called odd.

Remark Signature are additive,

sing(Q' @ Q") = signQ’ + signQ”
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In particular
sign(M#N) = signM + signN

Also, changing orientation of M will change the sign of the signature
signM = —signM

Since it obviously changes the sign of its intersection form: Q37 = —Qun

4 Developing the Tools

Theorem 3 (The Hurewicz Theorem)

If a space X is (n—1)-connected, n > 2, then H;(X) =0 fori < n and 11,,(X) = H,(X).
If a pair (X,A) is (n — 1)-connected, n > 2, with A simply connected and non-empty,
then Hi(X,A) =0 for i < n and [1,(X, A) =~ H,(X, A).

Corollary 1 A map f: X — 'Y between simply connected CW complexes is a homotopy
equivalence if fi : Hy(X) — H,(Y) is an isomorphism for each n.

Proof After replacing ¥ by the mapping cylinder M; we may take f to be an inclusion
X <= Y. Since X and Y are simply connected, we have II;(Y, X) = 0. The relative
Hurewicz theorem then says that the first nonzero II, (Y, X) is isomorphic to the first
nonzero H, (Y,X). All the groups H, (Y, X) are zero from the long exact sequence of
homology, so all the groups II,,(Y, X) also vanish. this means that the inclusion X — Y
induces isomorphism on all homotopy groups, and therefore this inclusion is a homotopy
eqivalence.

5 Proof of Main Theorem(Milnor, Whitehead)

Proof Take a simply connected 4-manifold M. Then H;(M;Z) = 0, so by Poincare
duality we have H*(M;Z) = Hi(M;Z) = 0.

Now, by universal coefficient theorem, H3(M;Z) = 0. Hence by Hurewicz’s theorem,
(M) = Ho(M,Z).

Since M is simply connected , Ho(M,Z) has no torsion and then is isomorphic to some
Z™. Hence the isomorphism lly &2 Ho can be realized by a map,

FiS% VS M.

Such f induces an isomorphism on 2-homology, and thus on all homology groups but the
fourth.

To remedy this defect, we can cut out a small 4-ball from M and thus annihilate its
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H,. The remainder, denoted by A1°, is now homotopy-equivalent to S2V - -V S2: Indeed
the map f can be easily arranged to avoid the missing 4-ball, and it then induces an
isomorphism of the whole homologies of the two spaces. Invoking result of Whitehead
implies that f is infact a homotopy equivalence

M°~ Sty S

Since M can be reconstructed by gluing the 4-ball back to M°, we deduce that the
homotopy type of M can equivalently be obtained from \/,, S? by gluing a 4-ball D* to
it:

M ~\/ 8% Uy D

The attachment of the ball is made through some suitable map
¢: oD —\/ 52

In conclusion, the homotopy type of M is completely determined by the homotopy class
of this ¢; this class should be viewed as an element of II3(\/,, 5?).

To prove whitehead’s theorem, we need only show that the homotopy class of ¢ is com-
pletely determined by the intersection form of M.

At the outset, it is worth noticing that, through the homotopy equivalence M ~ \/, §%Ug
D*, the fundamental class [M] € H4(M;Z) corresponds to the class of the attached 4-ball
D*; indeed, since the latter has its boundary entirely contained in the 2-skeleton \/, 52,
as 0D* = 5% and \/,, 52 Uy D* has no 3-skeleton; it represents a 4-cycle.

Think of each S? as a copy of CP! inside CP*. Then embed
Sy 82 CCP® x - x CP™,
and consider the exact homotopy sequence
Ly (XmCP®) = La(xmCP>,\/ §%) = Ll5(\/ $%) = Lls(x,nCP>).

Since CP* is an Eilenberg-MacLane K (Z,2)-space, the only nonzero homtopy group of
X mCP* is 79, and thus the above sequence exhibits an isomorphism

Ly (< CP>,\/ 8%) = LU3(\/ $%).

The above 74 is made of maps D* — x,,,CP> that take 8D to \/, S%. The isomorphism
associates to m: D' — \/, 52 in 73 the class of any of its extensions

é: DY — x,,CP>.
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Now, we have an exact homotopy sequence:
U (%mCP®) = LUz (xmCP%, \/ 82) = Ls(\/ §2) = L% CP>) —

Ly (% mCP=, \/ §2) = 11(\/ §%) = 11 (xmCP>) = 111 (x,nCP=, \/ §%) = 0

Since the inclusion S2 C %,,CP* induces an isomorphism on ll,. Hence the homotop
m y

exact sequence implies that both II;, 11 and II3 of the pair (x,,CP*,\/, S2) must vanish.
Therefore, Hurewicz’s theorem shows that we have a natural identification

Ly (xmCP®,\/ $%) = Hy(x,nCP>,\/ 5% Z).
through this identification, the class of ¢ from II, is sent to the class
$u[D*] € Hy(xmCP>,\/ % Z,)
where &, is the morphism induced on homology by the map &.

Also, we have the homology exact sequence:

Hy(\/ $%2) — Hy(xmCP=;Z) — Hy(

m

*mCP,\/ §%:2) — Hs(\/ $%2) —
Hy (% CP Z) — Hy(xmCP, \/ §%Z) — Hy(\/ §2) = Ha(x,nCP>) —

Hy(5nCP®,\/ $%) = Hi(\/ §%) = Hy(x,nCP>).

m m

Since both Hy and Hs of \/,, 2 vanish, the homology exact sequence makes appear the
isomorphism
Hy(xmCP®,\/ S Z) ~ Hy(x,,CP>; Z).

For example, since &*[Dl] represents a 4-class and its boundary is included in the 2-
skeleton of x,,CP>, it follows that ¢.[D%] can be viewed as a 4-cycle directly in Hy (%, CP>; Z).

Owing to the lack of torsion, we also have a natural duality

HY (X, CP®; Z) = Hom(H4(x,nCP®; Z),7Z).
This shows that, in order to determine &*[D’l] in Hy, it is enough to evaluate all classes

from H* on it. In other words, the class ¢ € TI3(V,, 5?) (and thus the homotopy type
of M) are completely determined by the set of values oy (¢.[D?4]) for some basis {oy}; of
HA(%mCP>; Z).
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Such a basis can be immediately obtained by cupping the classes dual to each S2, that is
to say we have
HY(xCP®; Z) = Z{w; — w;}ij,

where wy, denotes the 2-class dual to CP! inside the k** copy of CP*. Furthermore, since

Hy(xmCP¥; Z) ~ HA(\/ 8%, Z) = H*(M°; Z) ~ H*(M; Z),
we see that each class of wy, of x,,CP*> can be in fact viewed as a 2-class wy of M itself.

Specifically, the inclusion ¢: \/,, 52 C x,,CP*® extends by # to the map

M ~\/ 82Uy Dt 22, CP.

m

The wy’s appear as the pull backs wy = (¢ + z;))*wk and make up a basis of H2(M;Z).

Evaluating w; ~— w; on &*[D’l] inside X, CP* yields the same result as pulling w; and w;
back to M, cupping there, and the evaluating on [D%]:
(wi = wi)(@[D"]) = ((¢ + @) (wi ~ wy))[DY]
= ((e+ ¢)'wi) ~ (¢ + )"w;)[D']
= (wi — wj)[D].
However, as we noticed at the outset, the class [D?] coincides with the fundamental class

[M] of M, and hence
(wi @) [DY] = Qs (i, i)
Since {wy, - wn} is a basis in H2(M;Z), we deduce that the set of values Qs (cv;,wy,)

fills-up a complete matrix for the intersection form Qs of M.

On the other hand, as we have argued, by staying in x,,CP> and evaluating all the
w; — wj's on $.[D] we fully determine the class of ¢ in 1l3(V/,, S?) and thus fix the
homotopy type of M.

This concludes the proof of Whitehead’s theorem.

6 Computation of intersection forms of some manifolds

For a closed R-orientable n-manifold M, consider the cup product pairing,
H*(M;R) x H"*(M;R) - R
(¢,9) = (¢ — ¥)[M]

Such a bilinear pairing A x B — R is said to be non-singular if the maps A — Hom(B, R)
and B — Hom(A, R), obtained by viewing the pairing as a function of each variable sep-
arately, are both isomorphism.
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Proposition: The cup product pairing is nonsingular for closed K orientable manifolds
when R is a field, or when R = Z and torsion in H*(M;Z) is factored out.

Proof: Consider the composition
H "(M; R) & Homp(H,_i(M; R), R) 25 Homp(H*(M; R), R)

where h is the map appearing in the universal coefficient theorem, induced by evaluation of
cochains on chains, and D* is the Hom-dual of the Poincare duality map L) : H* — H,_,.
the composition D*k sends ¢ € H"%(M; R) to the homomorphism ¢+ %([M] ~ ¢) =
(¢ — )[M]. For field coefficients or integer coefficients with torsion factored out, A is an
isomorphism. Nonsingularity of the pairing in one of its variables is then equivalent to D
being an isomorphism. Nonsingularity in the other variable follows by commutativity of
the cup product.

Corollary 2 If M is a closed connected orientable n-manifold, then for each element
o € H¥(M;Z) of infinite order that is not a proper multiple of another element B €
H"#(M;7Z) such that o — B is a generator of H™(M;Z) ~ Z. With coefficient in a field
the same conclusion holds for any o # 0

Proof: The hypothesis on a means that it generates a Z summand of H*(M;Z). There
is then a homomorphism ¢ : H*(M;Z) — Z with ¢(a) = 1. By the nonsingularity of
the cup product pairing § € H ””‘"’(M;Z) and evaluating on [M], so o — [ generates
H™(M;Z). The case of field coefficients is similar.

A. The sphere (5%): It does not have any 2—homology, it has no intersection form
worth mentioning.

B. The complex projection plane (C#?):

We know that H*(CP?,7Z) = Z[a]/(o?) with |a| = 2

By Corrolary (2), 38 € H?(CP?,Z) such that a — f generates H*(CP?, Z)

let 8 =ma

Now, (a — B)[CF? =1 = m(a — a)[CF?] = 1 = m = £1, without loss of generality
m=1, . a-aCP=1

Thus it has intersection form Qcp2 = (+1). Since Ha(CF?;Z) = Z{[C ']} where CF! is
the class of a projective line, and since the two projective lines always meet in a point.
The opposite oriented manifold CP? has intersection form

Qgpz = (1)
C. Sphere Bunde (S? x 52): We have by Kunneth Formula
H*(S? x §2,7)

= H%(8%72) @z H(8%,2) & H'(S*7) @7 H' (8% 72) & H°(S?,Z) @z H*(S?,7)
Ay
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Also, by Kunneth formula:
HY(S?® 5%, 7)
= HY(S% Z) @ H(S% Z) & H3 (5% 2) 05 H(S%Z) & HX(S% Z) @ HX(S% Z)
& H'(562;,Z) @7 H*(S%: Z) & H(S%,2) @z H*(S%2)
= H?(8%,2) @z H*(S%:,2)[ H{(S%Z) =0 for i#0,2]
=7 QyZ
=27
We know that,
H*(S%72) = Z]o]/(®) where |a] =2
S HY(S% % 8% 7)) = Za, ]/ (o2, 6%)  where o] = |8] =2
a\_/a:ﬁ\_/ﬁ:()
Now, by the corollary, for oo € H2(S? x 82, 7), Iy € H%(S? x 52;7Z) such that o — v is a
generator of H*(S% x §2;7).
Let v =aa +bp
o — 7= (a0 + ) = ala— 0) + o — ) = b(or — )
Since o — «y generates H*(5% x S%;Z), we have:
(a—7)[S?x 8 =1
=Sbla— B)S?x 8 =1
b=+1
Without loss of generality let 6 = 1, Then (o — 8)[S? x §?2] =1

Hence the intersection form of S? x §2 is:

01
Qs2xs2 = 10

. - . . . . 11
For the twisted product %% $?; the intersection form is Qg25g2 = (1 O> 50 Qg25g2 =

1 0
(5 5)-twecy
82582 = CP?’#CP?

D. The manifold £g: Freedman’s Eg manifold is Mp, = Ppg, Us, A. This topological
4-manifold was build by plumbing on the Eg diagram and capping with a fake 4-ball. Its
intersection form can be read from the plumbing diagram to be

2 1
121
121
121
Quipy = 121 1
121
12
1 2
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Lemma 4 The Eg-form is positive-definite, even, and of signature 8.

Proof: We will perform elementary operations on the rows and colums of the £g-matrix.
First off, notice that these operations must be applied symmetrically, corresponding to
change of basis in Hy(M;Z). That is to say when for example we subtract 3/2 times
the first row from the third, we must afterwards also subtract 3/2 times the first column
from the third column. Indeed, since the matrix A of a bilinear form acts on Hy x Ha
by (z,y) — x'Ay, any elementary change of basis I + AEj; on H will transform A into

Debote by (1),(2),(3),(4), (5),(6),(7),(8) the eight rows / columns of the Eg-matrix,
and let us start: We write down the Eg-matrix, then subtract 1/2 x (1) from (2):

2 1 2
121 3/2 1
1 21 1 21
1 21 1 21
121 1| them 121 1
1 21 1 21
1 2 1 2
1 2 1 2
Subtract 2/3 X (2) from (3), then subtract 3/4 x (3) from (4):
2 2
3/2 3/2
4/3 1 4/3
1 21 5/4 1
121 1] them 1 21 1
1 21 1 21
1 2 1 2
1 2 1 2
Subtract 4/5 x (4) from (5), then subtract 1/2 x (8) from (5):
2 2
3/2 3/2
4/3 4/3
5/4 5/4
65 1 1| them 7/10 1
1 21 1 2 1
1 2 1 2
1 2 2
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Subtract 10/7 x (5) from (6), then subtract 7/4 x (6) from (7):

2 2
3/2 3/2
4/3 4/3
5/4 5/4
7/10 then 7/10
47 1 4/7
12 1/4
2 2

We have diagonalized Ejg, and its signature is 8. It is positive-definite. Its determinant is
det g = 1 and hence Eg is unimodular, as claimed.
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Abstract
In this paper we go on to discuss about Stanley’s theorem in Integer
partitions. We give two different versions for the proof of the general-
ization of Stanley’s theorem illustrating different techniques that may be
applied to profitably understand the underlying structure behind the the-

orem.

KEYWORDS: Stanley’s theorem, Tilings,Partition identities.

Introduction:

Stanley’s theorem is an important result in the theory of partitions. Various
generalizations have been made to it over the course of time including Elder’s
theorem[1] and Dastidar & Gupta’s[2] subsequent generalization.In their paper
they go on to show how the sum of the number of distinct members of the
partition is not just equal to the number of 1’s present in the partition of the
same number but is also equal to the sum of the number of i’s in the partitions
of all the numbers from n to (n+i-1), where i can be any positive integer. In
this paper we go on to provide different combinatorial arguments to prove such

generalizations. A proof of the generalization involves the use of tilings of a
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1xoo board. This concept can be further generalised to cover similar properties
for overpartitions as well. To prove the generalization we first make use of some

lemmas which follow subsequently in the article.

LEMMA 1.1 :

Let n and k be two positive integers with & < n, then for each positive
integer i, (1 <4 < n), we have n + i = ¢;k + r;, where 0 < r; < k,

then g =¢qo ,forall 1 <i<s—1

=qo+1,forali>s

And r; =719+, for all 1 <i <s-1,

=i—s,for all i >s where s =k — g

Proof of lemma 1.1 :

Let us consider the two integers n+i and k,

then by division algorithm there exists two integers ¢; and r;
such that;n + i = ¢;k + r; with 0 <r; < k. Now, n = qok +1¢ .
We assume, k — 19 = s

Then we have the following,

n = qok + ro;

n+1=qk+ (ro+1);

n+2=qok+ (ro +2)

n+s—1=qk+(ro+s—1)
n+s=(qg+1)k
n+s+1=(gp+1k+1
n+s+2=(q+1)k+2
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n+k—1=(q+1)k+(ro—1)

By the above formula it is clear that

¢ =qoforalll <i<s—1

=qo+1foralli>s

Hence the lemma 1.1

Notation: Qg(n + i) :=Number of occurences of k

in the unordered partitions of (n + i)

B(n) :=Sum of the total number of distinct members

in all the partitions of n.

An) = Zf;ol Qp(n + i)=Sum of all the number of occurrences of k in all

unordered partitions of n+i for all 0 <i < k—1

LEMMA 1.2 :

Qr(n+1i) =39, P(n+i— jk), for some fixed i.

j=1
Proof of lemma 1.2 :

For a fixed i, considering the two integers n+i and k, then by division
algorithm there exists two integers ¢; and r; such that, n +1i = ¢;k + r;
with 0 < r; < k (as mentioned in lemma 1.1)

For a fixed i, the number of partitions of n-+i,

where k occurs exactly once is P(n +i — k) — P(n+ i — 2k),

the number of partitions of n+i,

where k occurs exactly twice is P(n + i — 2k) — P(n + i — 3k),

The number of partitions of n+i, where k occurs

exactly (¢; — 1) times is P(n +i — (¢; — 1)k) — P(n + i — ¢k)
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And , the number of partitions of n-+i, where k occurs

exactly ¢; times is P(r;).

So Qi (n + 1)

= The number of occurrences of k in all unordered partitions of n+i
=P(n+i—k)—P(n+i—2k) + 2[P(n+i—2k)— P(n+i—3k)] +....
A (@ = DP(n+i— (¢ — D) = Pn+i— k)] + ¢ P(r;)
=P(n+i—k)+Pn+i—2k)+P(n+i—3k)+.....

o+ Pln+i— (¢ —1)k)— (¢ —1)P(n+1i— qik) + ¢ P(r;)
=P(n+i—k)+Pn+i—2k)+P(n+i—3k)+.....

o+ P(n+i— (¢ —1k)—qP(n+i—qk)+ P(n+i—qk)+ qP(r:)
=P(n+i—k)+Pn+i—2k)+P(n+i—3k)+.....

..... +P(n+i— (¢ —1)k)) + P(n+i—qk)[since,n +i— gk =r]
=% P(n+i-—jk),

j=1

Hence the lemma 1.2.

Observation: When te{1,2,...,n} is fixed for all 1 < i <n ,we have,
Zf;ol [P(n+i—tk)] = P(n—tk) + P(n+1—tk)+ P(n+2—tk)+.....
+P(n+k—1—tk)

=P(n—tk)+P(n—(tk—1))+P(n—(tk—2))+....+ P(n—((t —1)k+1)).

Now we come to our main theorem which states that,

THEOREM 1 :

A(n) = B(n) for all integers n

Proof of theorem:

We consider A(n) = ¥ 0 Qu(n +14) =S50 [X P(n +i — jk))
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{By lemma 1.2}

=Y [Pt i— k)] + S [P(n+i—2k) +....

+ YIS0 IP(n +i— (g — DR)] + i [P(n+ i — g;k)]

from which it follows that A(n)
=[Pn—1)+P(n—2)+P(n—3)+....+ P(n—k)] + [P(n— (k+1))+
Pn—(k+2))+....4+P(n—2k)... +[P(n—((go—1)k+1)+
P(n—=((a0— 1k +2)+ ...+ P(n— qo)+ LI [P(n +i — gik)]

(by above observation)

= Pn—1)+Pn—2)+Pn—3)+....+ P(n— gok) + S} P(r;)
(Using lemma 1.1)
=Pn—1)+P(n—2)+P(n—3)+....4+ P(ro)+

[P(ro —1)4+ P(ro —2)+.... + P(1) + 1]

This is the expression for A(n). Now to find the expression for B(n) using

P(1), P(2),....,P(n—1). For finding the expression for B(n),we will look at

this sum to count the number of partitions of n in which the number i appears

and sum those result for all 1 < i < n.Now the number of partitions of n in

which i appears is P(n — 1) for all 1 <i < n—1 and with the special case i = n

is 1. Hence B(n) =1+ P(1)+ P(2)+....+P(n—3)+ P(n—2)+ P(n—1).

Hence A(n)= B(n)

This completes our proof.
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2. A TILLING PROOF OF THE EXTENSION

OF STANLEY’S THEOREM

We consider a 1xoo board. We will tile this board using white squares and
finitely many black squares. We allow the stacking of the black squares. Let T
be the set of all such tilings. Let a white tile will have measure 1 and a black
tile in position i will have measure ¢*. Now we define the measure of a tiling to
be M(t)= [T m(t). (where the product runs over all the squares for a particular

tiling te T. And m denotes the measure of the squares for a particular tiling t.

Partition representation of a tiling:

Suppose we assume a partition of m = p; +p, + ..... 0, denoting this
partition by p. Then we associate a tiling ¢, such that, it has a black tiles
in position py,Py..., . Now as the numbers py, 1y, .., 1 may not all distinct
so we can have more than one black tiles in some position. Also we obtain
]W(f,p) — q111+112+. R 5

Now we need these following lemmas in order to prove the theorem.

LEMMA 2.1 :

For each 1 < i < k—1, the number of partitions of n with atleast (k-i) times
r = Number of partitions of n+ir with atleast r times k.

Proof of lemma 2.1 :

Consider A= Set of all tilings with atleast (k-i) black tiles in position r.
And B=Set of all tilings with atleast r black tiles in position k.
Now we define T: A—B, by the following way,

We take a tiling from A, then we remove (k-i) black tiles from position r and
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add r black tiles in position k.

Then T is well defined map. In order to prove T is bijective

we define a mapping S:B— A, by the following way,we take a tiling from B,
then we remove r black tiles from position k and add (k-i) black tiles in
position r. Then S is well defined map. Also ST =1d4 and T S = Idp,

the identity mappings on A and B respectively.

—r(k—i)+kr _ ir

Now clearly the change of measure under the map T is ¢ q
Now take A*=Set of all tilings of A with measure ¢".

Then for each tiling of A* we obtain a bijective Correspondence with a tiling
of B of measure ¢"*i".

Now every tiling gives a partitions and vice versa.

So by the Partition representation of a tiling,

we have that, the number of partitions of n

with atleast (k-i) times r = number of partitions of n+ir

with atleast r times k.

Hence the lemma 2.1.

LEMMA 2.2 :

Number of partitions of n with atleast i times r = The number of partitions

of n with atleast r times i.

Proof of lemma 2.2:

Consider M= Set of all tilings with atleast i black tiles in position r. And
N=Set of all tilings with atleast r black tiles in position i. Now we define
Q: M—N, by the following way, We take a tiling from M, then we remove i
black tiles from position r and add r black tiles in position i. Then Q is well

defined map. In order to prove Q is bijective we define a mapping Z:N—M, by
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the following way,we take a tiling from N, then we remove r black tiles from
position i and add i black tiles in position r. Then Z is well defined map. Also
QZ=Idy and ZQ = Idys, the identity mappings on N and M respectively. Now
clearly there is no change of measure under the map Q. Now take M*=Set of all
tilings of A with measure ¢". Then for each tiling of A* we obtain a bijective
Correspondence with a tiling of N of measure ¢" . Now every tiling gives a
partitions and vice versa. So by the Partition representation of a tiling, we have

the lemma 2.2.

LEMMA 2.3 :

The number of partitions of n with atleast 1 times r = The number of
partitions of (n-+kj-r) with atleast j times k. we assumen = gk+r,and1 < j < q.
In particular,Vf’(71,+k’j71”) = VF(n+ks—r), forall 1 < j,s < n Where Vi (m)=

The number of partitions of m with atleast p times q.
Proof of lemma 2.3:

Let C = Set of all tilings with atleast 1 black tiles in position r. And D= Set
of all tilings with atleast j black tiles in position k. Now we define F: C—D, by
the following way, We take a tiling from C, then we remove 1 black tiles from
position r and add j black tiles in position k. Then F is well defined map. In
order to prove F is bijective we define a mapping G:D—C, by the following way,
we take a tiling from D, then we remove j black tiles from position k and add 1
black tiles in position r. Then G is well defined map. Also GF = Idcand FG =
Idp, the identity mappings on C and D respectively. Now clearly the change of
measure under the map F is ¢*/7".

C#=Set of all tilings of C with measure ¢". Then for each tiling of C# we

obtain a bijective Correspondence with a tiling of D of measure ¢" /=",
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Now every tiling gives a partition and vice versa. So by the Partition repre-
sentation of a tiling, we have that, the number of partitions of n with atleast 1
times r = number of partitions of n+kj-r with atleast j times k.

So notationally, V/(n + kj — r) = Vi (n).

Since the right hand side of the above expression does not depend on j,so
clearly we have that, V(n+kj —r) = VFE(n+ ks —r), forall 1 <j,s <n

Hence the lemma 2.3.

Now we come to our main theorem.

Proof of theorem :

First we put r=1 in lemma 2.1.
Then we get, the number of partitions of n with atleast (k-i) times 1 =

number of partitions of n+i with atleast 1 times k.

Notationally V(k Hn) = Vll"’(n, +1) for all 1< 4 < k —1 We sum this over all

1<i <k~ 1 and obtain, ¥ (k _y(n) = S VEm ) (1)

Now we put r=1 in lemma 2.2. and obtain, V;'(n) = V{(n) We sum this

over all k <4 < n and obtain, Y, , Vi*(n) = Y1, Vi(n) ..... (2)
We add (1) and (2),we obtain
S Vi () + S Vi (n) = 5 Vi (n+6) + S0, Vi (n)

S Vi) = S5V + ) + T Vi)
Number of 1’s present in the all unordered

partitions of n

—27 L VE( ) + X0, Vin)
=S Vi) + VEm) + T V()

=S o VEm )+ I A €7 R (4)
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Now by lemma 2.3
Z;;;Hl Vi(n) = Z? =k+1 V (n+kj—r)
Y Vi(n) = Sk e Vi k=1 )+ et Vit ki =)+
e (- 1)k+1(V (n+kj—r))
Skt V() = S VB (4 2k =) + Sl V(43 =) +
~~Z?i(q—1)k:+1(‘/qk(71/ +kq—r))
S VI () = SN VE (i) + S VE (A ) b
A YV i) (6)
Now by (4) and (6) we have that, Number of 1’s present in the all unordered
partitions of n
_ k—1y,k . k=1 1,k . k—1y,k .
=i VEm+a)+ X Ve +a) + 2 o Ve i)+
.+ Z, o Vk (n+1)
=Y VE I VA D+ +0 Vi +k—1)
=Qr(n)+Qr(n+1)+Qrn+2)+............. +Qr(n+k—1)
=I5 Qu(n+1)

This completes our proof.
Conclusion:

In this paper we have tried to demonstrate how simple combinatorial proofs
can be effectively applied to problems involving unordered partitions. Similar
to the extension of Stanley’s theorem, we can apply similar techniques to prove
further extensions of Elder’s theorem and not just for regular partitions but
for all classes of overpartitions. The concept of tilings could also pe profitably

extended to study similar results in the area of planar partition
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Introduction to wavelets
Some simple ideas

A very brief history

Wavelet analysis is a new (?) development in the area of applied mathematics.

It was first introduced in seismology to locate underground oil deposits. Petroleum geologists
usually locate underground oil deposits by making loud sound noises.

Why?

Because sound waves travel through different materials at different speeds, and
geologists can infer what kind of material lies under the surface by sending seismic
waves and measuring how quickly they rebound.

Unfortunately, seismic signals contain lots of transients - abrupt changes in wave as it
passes through one layer to another. Fourier analysis spreads that spatial information out
all over the place.

Jean Morlet , an engineer, in nineteen hundred and eighties, developed his own way of
analyzing the seismic signals to create components that were localized in space, which he
called wavelets of constant shape. Morlet, in his personal computer, could separate a
wave into its wavelet components and then reassemble them into original wave. But he
was not sure if this is mathematically sound. He found the answer from Alex Grossman, a
physicist at the Centre de Physique Theorique , Marseills. Both of them collaborated and
found that waves could be reconstructed from their wavelet decompositions. They coined
the word wavelet and published their paper in 1984

Yves Meyer heard about this work in the same year and is the first to realize the
connection between Morlet’s wavelet and earlier mathematical works of Littlewood,
Paley. He discovered a new kind of wavelet, with a mathematical property called
orthogonality that made the wavelet transform as easy to work with and manipulate as
Fourier transform. Orthogonality means that the information captured by one wavelet is
completely independent of the information captured by another.

In 1986, Stephane Mallat, a student of Meyer, linked the theory of wavelets to the
existing literature on subband coding and quadrature mirror filters. Thanks to Mallat’s
work, wavelets became much easier.

Ingrid Daubechies, a post doc in Courant Institute, fired the final great salvo in the

wavelet revolution in 1987. She discovered a whole new class of wavelets, which are not
only orthogonal but which could be implemented using simple digital filtering ideas.
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* The Daubechies wavelets have surprising features, such as intimate connections with the
theory of fractals. These turn the theory into a practical tool that can be easily
programmed and used by anyone with a minimum of mathematical training.

To summarize the history we have the following table.

1910, Haar families

1981, Morlet, wavelet concept

1984, Morlet and Grossman, wavelet

1985, Meyer, orthogonal wavelet

1987, International conference in France

1988, Mallat and Meyer, multiresolution

1988, Daubechies, compactly supported orthogonal wavelet

Mathematical Background

In mathematics, representing a complicated function f € Q, abstract space of
functions with the aid of some simpler functions {f n } € Q by

f=2c 1,

(D

for unique set of coefficients {Cn }, has been employed since the era of Lagrange.

Representation (1) may be regarded as the decomposition of complicated function (phenomenon)
into the sum of many simple pieces in such a way that the study of each of these pieces might be

easier. For instance, if T is a operator (linear, in particular) on Q and its action on f n €

Q are known, one can find the action of T on an arbitrary function f € Q, as

Tf = Zn nTh (2
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Whenever the abstract space Q is a separable Hilbert space H , a countable set of
functions {f n } < H is said to be Riesz basis if every f of the space can be written
uniquely as in (1) and there is a bounded invertible operator on H , mapping { f n } onto an

orthonormal basis for H .

If the functions {f n } = A is the sequence of orthonormal functions, the formal infinite

series (1) is called Fourier series of f and the functions f n ’s are called harmonics.

Examples are:
i) System of trigonometric functions :
1 1 1 . 1 .
—-— —F—COSX ——SInx —=COSnxX ———=Smnx
2 2 A2m 2w Nomo
1 inx _
or e n=0,£1,+2,......
27w ’
ii) System of Strum-Liouville functions:

Solutions of the homogeneous self-adjoint linear ordinary differential equation

dix(p(x)%]Jrq(x)wrﬂu:o,agxgﬁ

with some well behaved functions p (X) and, q('x ) for all possible values of 2’

du _ du
satisfying boundary condition a thu=0 5 X=U ,y4 x +gu=0 g

x=p.

To analyze a function it is helpful to use some basic tools (i.e., basis) that look like the function
itself.
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Now the question arises, does there exist at all an orthonormal function system with the property
that every continuous function (even not in the space containing the basis) can be expanded in
the Fourier manner into a uniformly convergent series, according to the function of this system?
The answer is negative, has been shown a long ago by Haar in his dissertation work at Gottingen
in 1909. In the same vein Haar prescribed a complete set of orthonormal discontinuous functions

based on a single function % [0,1] (characteristic function on [0,1]) such that the Fourier

series with respect to the proposed set of orthonormal functions of a function f converges to
[ A f

this function at every point of continuity X of .

Haar’s mother wavelet function

1
PO =10<t<z

= —1,% <t<1
= 0, otherwise

Its scaling function is

p)=10<t<1
= 0, otherwise

I .
Pi(t) =220 (27t — k), jk €L

Z= (o, =2,-1,0,1,2 ...}
I .
Pie(t) = 229 (27t — k), j, k €L

Support of 1, (£) is [;, k = [ k27, (k+1) 27)

f Py (0)de =0
R
f P’ (Odt =1
R

The Haar functions are pairwise orthogonal,
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f ijk(t) 1pmn(t)dt = 5]’m5kn
R

The Haar system on the real line is the set of functions {1/)]-k ®),),k € Z}.

It is complete in I*(R): The Haar system on the line R is an orthonormal basis in L*(R).
Properties of Haar wavelets

1 .Any continuous real function with compact support can be approximated uniformly

by linear combinations of (), 0(2t), p(2%0), ..., (p(th).

and their shifted functions @ (t). This extends to those function spaces where any
function therein can be approximated by continuous functions.

2 . Any continuous real function on [0, 1] can be approximated uniformly on [0, 1] by
linear combinations of the constant
function 1(const), 1 (£),1 (2),(22t), ..., 1 (2/t) and their shifted functions 1 4 (£)

3 .Orthogonality in the form

f ijk(t) 1pmn(t)dt = 5]’m5kn
R

After seventy years of its inception, the work of Haar initiated a new scheme for representing
functions, now known as wavelet expansion in mathematics, wavelet transform of signal in
engineering [Daubechies]. It also developed a novel scheme for the systematic analysis of the
convergence of the expansion known as the multiresolution analysis (MRA) [Mallat & Meyer].

Wavelet expansion are similar to the Fourier expansion but the different functions f n’s (like

. e o u, ( ﬂn , )C) nonzero almost everywhere within the domain of definition of
27
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the function ) in the basis are replaced by (DL k (x) € I;, © R indexed by the collection of
all subintervals. Note that these functions are all copies (by translation and change of scale) of

the same regular function (p (x ) , localized in a finite domain in .

A MRA of the Hilbert space H of square integrable functions L2(R) is defined as a sequence

of closed subspaces Vj = H s ] € Z , with the following properties:

V.c V.,

DI J
ii)v(x)e V, < v(2x)e V.

J+l;

iii)v(x)eVo Pt v(x+1) e V,.

o Uy wwd V2V, =10},

o0 ' j is densein L? J ;

wPEV o i _ .
v) A function 0, known as scale function, with a nonvanishing integral exists such

that the collection {(p (x - l) | l € Z} is a Riesz basis of VO .

2
Moreover, a sequence {h k } el (Z ), known as filter coefficients or masks, exist such that
the scale function satisfies the relation

Q’(X):\/Z_Zk:th’(ZX—k) G)

goes by several different names: refinement equation, the dilation equation, the two scale
difference equation, renormalization equation etc.
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Interestingly, it can be shown that the collection of functions {(p J.k |k€Z } with

z
—n92 J
(oj,k (x) =2 Q (2 x_k) is a Riesz basis of Vj .
It is important to note that in the scale function ¢ — dependent analysis of wavelet

(R . h :
expansion of , the filter coefficient or mask "“k plays the dominant role. For
example,

i) Support of the scale function Q depends on the number of nonzero hk ’s. If the

number of nonzero hk is finite, the scale function ? has compact support.

ii) The Fourier transform (0(5) of (p()C) also depends on hk through the
relation

——TI1m,

27T j=1

= Zk:hke_ikg (E J2 m, («f))

with

It has been found that although Daubechies scale function can generate sets of orthonormal basis
for multiresolution approximation of any function f € L?(R)defined over the entire real line R,
it looses this aspect whenever the domain of definition becomes finite. The origin of this
difficulty lies in the loss of the translational invariance (condition (iii) of MRA) of the scale
function near the edges of the finite intervals. Consequently, straightforward use of MRA is no
longer possible.

To overcome such hindrance, some researchers tried to regain MRA either with the aid of
biorthogonal system or by constructing a set of orthonormal basis with the help of the scale
functions having full and partial supports within the finite domain. Unfortunately, the process of
construction of the orthonormal basis swallows many advantages of the method achieved in case

of whole real line.
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It has been observed that orthogonality is no longer a significant issue for wavelet bases of
Sobolev spaces. Instead, the size of the support of a scale function or wavelet turns out to be an
important criterion for its performance.

Multiscale analysis has found its way into diverse fields, from differential or integral equations,
numerical analysis in mathematics to signal and image processing in computer science and
electrical engineering.

¢ Daubechies wavelets
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) A ——
Ing'rid Daubechies (December 2005)
DOB: 17.8.1954,
POB: Houthalen-Helchteren, Belgium
Short Biography

Daubechies was born in Houthalen, Belgium, as the daughter of Marcel Daubechies (a civil
mining engineer) and Simonne Duran (then a homemaker, later a criminologist). Ingrid
remembers that when she was a little girl and could not sleep, she did not count numbers, as you
would expect from a child, but started to multiply numbers by two from memory. Thus, as a
child, she already familiarized herself with the properties of exponential growth. Her parents
found out that mathematical conceptions, like cone and tetrahedron, were familiar to her before
she reached the age of 6. She excelled at the primary school, moved up a class after only 3
months. According to her parents she was able to derive the area of an ellipse by means
of integral calculation at the age of 11. After completing the Lyceum in Turnhout she entered
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the Vrije Universiteit Brussel at 17. Daubechies completed her undergraduate studies in physics
atthe Vrije Universiteit Brussel in 1975. During the next few years, she visited the CNRS Center
for Theoretical Physics in Marseille several times, where she collaborated with Alex Grossmann;
this work was the basis for her doctorate in quantum mechanics. She obtained her Ph.D. in
theoretical physics in 1980, and continued her research career at the Vrije Universiteit Brussel
until 1987, rising through the ranks to positions roughly equivalent with rescarch assistant-
professor in 1981 and research associate-professor 1985, funded by a fellowship from the NFWO
(Nationaal Fonds voor Wetenschappelijk Onderzoek).

In 1985 Daubechies met mathematician Robert Calderbank, then on a 3-month exchange visit
from AT&T Bell Laboratories, New Jersey to the Brussels-based mathematics division
of Philips Research; they married in 1987, after Daubechies had spent most of 1986 as a guest-
researcher at the Courant Institute of Mathematical Sciences. At Courant she made her best-
known discovery: based on quadrature mirror filter-technology she constructed compactly
supported continuous wavelets that would require only a finite amount of processing, in this way
enabling wavelet theory to enter the realm of digital signal processing. In July 1987, Daubechies
joined the Murray Hill AT&T Bell Laboratories' New Jersey facility. In 1988 she published the
result in Communications on Pure and Applied Mathematics.

From 1994 to 2010, Daubechies was a professor at Princeton University, where she was active
especially within the Program in Applied and Computational Mathematics. She was the first
female full professor of mathematics at Princeton. In January 2011 she moved to Duke
University to serve as a professor of mathematics.

In 2012 King Albert IT of Belgium granted her the title of Baroness.

Daubechies and Calderbank have two children, Michael and Carolyn Calderbank.
The name Daubechies is widely associated with

the orthogonal Daubechies wavelet

and the biorthogonal CDF wavelet.

Daubechies used the idea of multiresolution analysis to create her own family of wavelets.
These wavelets were of course named the Daubechies Wavelets. Daubechies wavelet family
satisfies a number of wavelet properties. They have compact support, orthogonality, regularity,
and continuity. The property of orthogonality is satisfied because the inner products of all of the
various translates of the Daubechies wavelets are zero. The regularity property is satisfied
because the Daubechies wavelets can reproduce linear functions. Finally, the continuity property
is satisfied because the Daubechies wavelet functions are continuous even though they are not
very smooth and not differentiable everywhere. Although it is not a very good one, there is an
example of the Daubechies scaling function shown below.
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Mathematically, wavelets with compact support

proposed by Daubechies, as the generalization of Haar function, are sets of Lfunctions generated
from a single function called father function or scale function or refinable function satisfying the
most important scale relation.

Most surprising aspect of this function is

that one need not know the explicit form of

the function at all for its use. Instead, only knowledge on the coefficients of two-scale relation,
usually called mask or filter coefficients, are enough for its application

to the appropriate problem.

In comparison to representing L? functions
in terms of orthogonal L? bases (usually having infinite support or support over entire domain of
interest) Daubechies scale function offers much convenient role for representing L? functions of
physical origin.

1. Basic properties of Daubechies scale functions

Here we will discuss the basic properties of Daubechies scale function with a compact support
mainly within a finite interval I = [a,b] © R (a, b are integers) so that a small programme can
generate requisite values effectively. Our emphasis here lies on the scale functions having three
vanishing moments of their wavelets.

1.1 Refinement equations

On R, the scale function ¢ with compact support[0,2K — 1] , K € N is assumed to satisfy the
refinement equation

@(x) = V2 H'a(2x) 1)

66



with the mask

H =H! o = (ho, hay oo e, hog1),

D(2x) = (p(2x), P1(2%), e e wee 02120 (2)
isa 2K X 1 matrix with

Pe(x) = @(x— k). (©)

In concurrence to the def. (1), define another function 1(x) as

PY(x) = V2 6 D (2x), )
where
G'=G ok = (9o, Gry e o o ,92k-1)
with .
9i=(—Dhpg_1-3,i = 0,1, o .. 2K — 1.

Masks (coefficients h;) for Daubechies scale function in R which maintains orthonormality with
its dyadic dilation and integer translates

i .
i (x) = 22(p(21 — k),k €z

at a particular resolution j and vanishing moment up to order K — 1 for 1(x), can be
evaluated.

Table 1: filter coefficients () for K =3 (I =1,2, ...... 2X3—-1)

l hl

0/5 1+/10+v5+2y/10
162

1/4 54+/10+£3v/5+21/10
16+/2

2/3 10-2v/10+v5+2y/10
1612
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Using the dilated functions @, (x) and ¥, (x) (j,k € Z) one can develop the multi- resolution
analysis (MRA) forL?(IR).

However, it is important to note that translational invariance and orthonormality of ¢y, ) (ke
Z)and ¥, (x) G = jos k, k' € Z), have been lost whenever the domain of independent variable
x is restricted to a finite interval I = [a, b]. To deal with this situation, we divide the translates
of refinable functions

ata particular resolution j as well as wavelet
into three classes

A}T = {(p]ﬁT =)y, (x),l = a2l —2K + 2, ... ,a2l — 1},
A= {p); = 9 (x), 1= a2/, ..., b2/ — 2K + 1},
AfT = {(p]-RlT =)y (x), 1 =52/ —2K +2,... .. b2/ — 1}, )

Here y;(x) = 1 when x € I and 0 otherwise.

Although the refinement equation for interior scale function of A} remains unchanged as given in
(1), the two- scale relation for other classes viz., AT and Ai” can be recast into

o (x) = \/E(Hé?ZTK—Z)x(ZK—Z)' H?zelz—z)x(ZK—z)) X (PFT(2x), IR (2x))T (6)
and
P T (%) = \/E(H%ZTK—Z)X(ZK—Z)' H{éﬁ—z)x(m—z)) X (@ (2x), @7 (2x))" @)

Here the notations H® and @*,
s = RT,LT,IRT,ILT are defined by

Hgg = [ngT] where ngT =hg_3p,—2K +2 < p.q < 1,and 0 otherwise

and
hy_op —2K+2<p<-1,
. 0<I<2K -3
HIH = =i=en (8)
0 otherwise;
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hg2p —2K+2<pg<-1

i =
otherwise
and
hi_n, —2K+2<p< -1,
T —4K +4 <1< 2K 1
HUT = CtH4<i< 2K+ ©)
0 otherwise;
with
maskin (2.1) 0<[]<2K —1,
hy = (10)
0 otherwise;
¢RT(x) = ((p‘g,(”(x), ------ !(pIETl‘(x))T7

PR () = (96 (), oo e, i3T5 (1)

and
D (x) = (pokr2(0), e, 9B ()T,
DT (x) = (‘P1—41<+4(x)' ------ ,(péK_l(x))T 12)

The abbreviations RT and LT in (11)-(12) stand for the overlapping of right tail and left tail of
support of the refinable function with the interval I.

NOTE (Imp.)

In contrast to the functions in the class A’ which are orthonormal and the integer translates of a
single function ¢(x) follows single scale equation (1), functions in the classes AR or AL are
neither orthonormal nor follow the single refinement equation. Instead, they are independent and
each of them follows different refinement like equations (6) and (7) separately.

Consequently, moments and normalizations

for scale functions in ART or ALT are

different from the same for the scale functions

in A",

1.2 Moments and product integrals

We just outline the recursive formulae for the evaluation of moments of scale functions
belonging to all three classes ART, AT and ALT.

1.2a Moments of ¢}, (x) € A
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The kth moment, M* for the scale function
¢ (x) can be obtained by using the refinement
equation (1) in the formula

Mk = fkatp(x)dx

—oc

2K -1

=2 Z hy /x ¥ (22 — Ddx
=0 7T

1 1 2K-1 (f.) 2RK—-1 L
o g
== 3 '(Z "=y M
2k—1v2 = W o
(13)
with M9 = 1. Given M*'s, k™ moment M}, of

translated and dilated scale functions ¢ (x)
of ¢ are given by the formula

k >k
A "‘,‘J’ = '/._x " P L,(J’}{!J'
1 Rk g
— i Z ( )1‘.—1: M™ (14)
2’(A+2) H:O L

Formulae (13) and (14) are essential to determine moments of scale functions in the
classes A and ALT.

1.2b Moments of ¢ € ART, ALT

If we denote

RE = ["x* @R (x)dx (15)
and
Le= [0 xkolT (x)dx (16)

for the scale functions @%7 (x) and @7 (x) , then R¥ and L* (components) respectively are
the solutions of the linear equations

1 1
(1(21<—2)x(21<—2) _FHRT)R]{ = FHIRTMHRT a7
and

1 1
(1(21<—2)x(21<—2) _FHLT)LIC = WHILTMHLT (18)
with
METRT = (Mo MGy, oo M2k )", (19)
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MEIT = (ME_yieraME _axcas, oo s ME_aie)T. (20)

Values of M]-If s in (19) and (20) are obtained
by simultaneous use of (13) and (14).

Partial moments for functions belonging to ARTand ALT at higher resolution j can be found by
using results of (17) and (18) in the formulae

— [Pk @RT __1 k
_fo X"y (x)dx 2J_(R%)R 21)

and

k— (9 Lkgll —_t g
LY =[xk (x)dx 2J_(R%)L . (22

The accuracy of the values of R and L* for

different = 0,1,2,--- -- -, can be verified from the consistency condition
T
R¥ + L* = (M _aie2 MG _3k43, o MG 1
(23)

1.2c Product integrals

By construction, the mask H' in (1) is determined with the requirement that

TSR Lo S
ND = ./x,,j,l,,j,gd.f_a,l,z (24)

where §;,;, is the Kronecker delta symbol.
However, this property does not hold when ¢ ‘s
belongtoAfTand ALT separately. Their numerical values

R

57 1:1,'-’!1( r) ©; [l(.J‘) dr s

NZ

& [Jl“ (25)

.’7x4‘r,ll( )'r (“"}'f'r s = LT
are solutions of the system of linear equations
N —HSNS(HS)T = HS(H®)T, s =RT or LT

(26)
where HRT, HIRT, HIT H'LT are given by (8) and (9) respectively.
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It must be noted that
601 () 9l () d or [0 HT(2) o () d

vanishes identically and N® (s = RT , LT ) follow the consistency condition

NET 4+ NI = Ik —2)x2x-2)- (27)
2. One-point quadrature formula for Daubechies scale function with partial
support

(Panja and Mandal (2011) Appl Math Comput)

There is a considerable progress in the use

of wavelet in the numerical estimate of functions satisfying differential equations or integral
equations or some mathematical operations which appear in diverse fields of science and
engineering. In spite of a considerable success, there still exist some important problems which
are yet to be solved satisfactorily. For example, numerical evaluation of integrals of products of
scale fuctions or wavelets having partial support within the range multiplied by an ordinary
function, may not be easy to perform. Except for a few special cases, it is not possible in general
to compute these integrals directly by finding their premitives.

Since Daubechies scale functions or wavelets

with compact support have no explicit forms, it is a formidable task to find the primitive of any
integral consisting of the product of Daubechies scale function or wavelet and any ordinary
function f(x).

Here the one-point quadrature rule for

Daubechies scale function and wavelet with

full support in the real line R is extended

to those with partial support in the finite

interval [a,b] < R. This rule gives very accurate numerical results for the integrals of product
ofa function f(x) € L%[a,b]

and Daubechies scale function with partial

support within [a, b].

2.1 One point quadrature rule for truncated
scale function

The one-point quadrature rule

>

[f@ej@ar ~ SrF=12) (28)
| 3 ‘

to estimate the numerical value of the integral
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involving product ofa smooth functions

f(x) and the scale functions (p,l-k (x) for k =2/q, ... ... ,2/b — (2K — 1)was established

by Sweldens and Piessen(1994) SIAM J Num Analysis and Kessler et al (2003) provided the
values of the moments are known.

However, this rule is not valid when k € L or R.

Kessler et al(2003) suggested using (K + 1) point Gauss-Legendre type quadrature rule with
weights determined by solving a system of linear equations obtained by the requirement that the
quadrature rule reproduces the lowest order moments up to order K for evaluating such integrals.
But the method will face considerable difficulties in reproducing the value of the function from
the raw images (i.e. the

coefficients of expansion of f(x) in the scale function (Daubechies) basis).

It is thus desirable to formulate one-point quadrature rule even for truncated scale functions with
minimum possible error so that all the scale functions can be treated on equal footing so far as
the evaluation of their integrals is concerned.

Keeping this in mind, one-point quadrature rule for integrals involving non-normalised truncated
scale functions is now developed.

We choose two constants, weight w and
node X such that

llJ . or o et or i’
/” F(a) 7:‘:!;,;\['.: H(.l‘) dr =~ “"‘jk” Rj (_,,:,'4;‘.1 I ) (29)

produces exact results up to polynomial of
degree one in x.

The choice f(x) = 1 in (29) then yields
whir® = / i ) da
= < >[u 25—k 2K~1] or [O‘h2i—g.?0)
The choice
f(z) =o— .?JL;,”‘ it for f(x)

in (29) produces
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TL or R _ i [}f.. 0)-1{(1)
Jk 27 ILL-‘ or H(O)

rt (-’3[32;'_:.-,21{—1]m [0.627-K]
& )[n 20—k 2K—1] or [0.b 2Lk],31)
- \
2J

In Tables 2a and 2b, some representative values of weights and nodes in the one-point quadrature

rule for truncated scale functions for Daubechies-3 scale function are given (calculated by using
the data given in Chen et al

(1996) Int. J. Num. Meth. Engg.)

Table 2a
Weights and nodes for boundary
integrals for RT

. L =L
k—2la Wik 7
_a 0.00034001000275035397 | , 4 0.00707276023564402
23 2
_3 0.01451327379758438 a 4 0:01540128074837215
27 /
) —0.09671144714834012 4 0.0313956584750341
27 “ g
_1 0.39925843016888396 a 4 0.02883810457561126
2% 2
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Table 2b: Weights and nodes
integrals for LT

for boundary

Y R —H
% — 27b wF, %,
—4 0.9996590890072496 bh— 3.1836869040537943
27 2
-3 0.9854867262024156 h— 2.2149701293285116
2% e
-2 1.0967114471483401 b— 1.075544999271151
2% 2
-1 0.600741569831116 b— 0.32312178530544267
A 27
23

2.2 Ermoranalysis

If E LR denote the error in the evaluation

of the integrals f f(x)(p] R (x)dx by the
one-point quadrature rule (29), then

b
E‘;?,LH — [r f(')r ( Y dr — WL Il’f(—L .'s’)

(32)
Thus
Ei W”"(C kGO -GN
(33)
where
L 27—k
e, = .[‘?j”fﬂ' (3*~2J¢, A) p(z)dz, (34)
A= Z /ﬂ Rn - 2},,_;\) w(z)d=. (35)
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Following a somewhat similar analysis with appropriate modifications, the error E ﬁ( satisfies the
inequality

1
R
B <

S o @O GO =GN
2 g

(36)
where 7% and A% have obvious meanings.

23 Illustrative Example

To demonstrate the efficiency of the one-point quadrature formula (29) with the weight and node
given by the formulae (30) and (31) respectively, the numerical results for the integral
4

fo 9 (W)dx

for Daubechies-3 scale function obtained by the present method are compared with those
obtained by Xiao et al (2006) Appl Math Comp

using Gauss-Legendre 7-point and wavelet Gauss n-point (n = 1,2,3,4) rules. The results are
presented in Tables 3a , 3b, 3c.

Table 3a: Values and errors in one-point quadrature rule

QI-TT pLI-Tt.
J J
1.15122605(—2) | 1.0(—02)
2.07411405(—2) | 2.0(—03)
2.16616669(—2) | 3.2(—04)
2.17657328(—2) | 5.7(—05)

W N | Of~.

Table 3b: Values and errors Gauss-Legendre 7-pt. quadrature rule in M subintervals

M Q} Pt. le PL.
20 | 2.184308(—02) | 6.3(—05)
50 | 2.174802(—02) | 3.2(—05)
80 | 2.178428(—02) | 4.2(—06)
100 | 2.178000(—02) | 1.0(—07)
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Table 3c: Values and errors in wavelet Gauss n-point quadrature rule (2n mode)

n Wwa EH(?
mn n

1| 4.62366468 4.6(00)

2 | 3.95942437(—-1) | 4.2(—01)

3 |3.59686182(—2) | 1.4(—02)

4 |2.15099945(—2) | 1.8(—04)

The Tables 3a, 3b, 3d show that the results obtained by the one-point quadrature rule presented
here are comparable to those obtained by multi-point Gauss-Legendre and wavelet-Gauss
quadrature rules. It is obvious that the one-point rule is easy to implement compared to the multi-
point in obtaining the same order of accuracy.

To verify the consistency of the rule we consider two more examples, viz.
7
%2

4 Z 4
Jo x2 9_1(x)dx and [ Weree ©_1(x)dx.

Since weights and nodes for wavelet-Gauss n-point quadrature rule proposed by Xiao et al
(2006) are not readily available and the values of ¢_;(x) cannot be well approximated at the
nodes of the Gauss-Legendre quadrature rule, we have calculated all the three integrals
approximated by using the one-point quadrature rule proposed here and Simpson’s one-third rule
at several resolutions and presented them in Table 3d.

Table 3d: Absolute errors in values obtained by using one-point quadrature rule and Simpson’s
one-third rule for f04 sinx ¢_;1(x)dx,
7

4 I 4 x2
fo x2 ¢_1(x)dx and fo — @_1(x)dx.

f() 7 | Abs Error in | Abs Error in
One-point Sin‘lpson's—:l,3
Sin(r) | O 0.01 | 0.40
1 0.001 0.017
2 0.0001 0.0.004
3 0.000014 | 0.00053
- 0 0.02 0.49
1 0.003 0.21
2 0.0004 0.02
3 0.00005 | 0.001
»2
Vi3 (o] 0.062 0.01
1 0.006 0.02
2 0.0007 0.005
3 0.00008 | 0.0008
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Comparison of the results confirms that the one-point quadrature rule provides very accurate
results at each resolution compared to the existing ones.

It may be noted that the values of the integral
4
f sin x ¢_4(x)dx,
0

for higher resolution are obtained by using the rule

b 1 2K-1 2K-1
/f(.r),:_,ﬁ,(.r):f‘r:Tl D S “
“ 27 1, =01;; 1=0

2K -1
hIJl 1"'hf1x
=0

216
/211” f E)r‘z(yrl,(qrgjr?[l+.H+1J‘171)+51("’)"

1 2K-1 2K-1 2K-1

%—}1 Z Z ----- Z h[jlhﬂjl—l.”h[lx
272 111:0 111_1:0 I1=0

""’2(2j1_11.‘+2j1_211+---+l11_1)+!j1 X

F2(201 20120y ey 1)+,
201w

).

f(

2027 e 2120 1)y

Remarks

1. Here one-point quadrature formula for evaluation of integrals containing product of
smooth function and scale function with partial support has been obtained. The bound for
the error in the quadrature formula has been analysed purely based on scale function,

without using the properties of wavelets.

2. Fromthe numerical results for the integral
4
f sin x ¢ _4(x)dx,
0

it appears that the error at resolution zero is found to be 1.0 x 10—-2. The estimates (33) shows
that this error decreases roughly at the rate of % ~ 0.18 per resolution as the resolution

27

increases. Thus, one can easily guess
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the level of resolution j at which the desired
order of accuracy can be attained (which is an
essential information for the development of
a self adaptive numerical method).

It opens the possibility to develop scale function based quadrature formula for numerical
evaluation of integrals (nonsingular and singular) in a finite interval by considering integrals of
products of a integrable function and a scale function with partial as well as full support
uniformly.

\

This has been done recently in the following paper (which is however not discussed here).

Gauss-type quadrature rule with complex nodes and weights for integrals
involving Daubechies scale functions and wavelets, Panja, M M and
Mandal, B N., J. Comput. Appl. Math 290 (2015) 609-632.

Regular and weakly singular integrals

3. Quadrature rule for weakly singular
Integrals

Weakly singular integrals appear in diverse fields of mathematical sciences. Since most of them
cannot be evaluated analytically, several numerical methods have been developed for evaluation
of their approximate numerical values.

Observing the success of representing f(x) € L%[a, b] in Daubechies scale function based
Meyer basis we now develop a quadrature rule in terms of raw image of f(x) (coefficients
" °T®) for numerical evaluation of weakly singular integrals with singularities at the edges a
and b.

3.1 Raw image of bounded f(x) € L?[a,b]

The coefficients of the expansion of f(x) in the scale function basis are known as raw image.
Similar to the expansion off(x) € L? [R], we represent f(x) € L%[a, b]as the sum

b2) -1
fla) = > Fik i k(@)X [a,p, (37)
k=a2i—(2K—-2)
where ¥[4p) is the characteristic function in [a,b ]. The range of k in the summation can be
justified since x € [a,b] and the support of @ (x) is [%,%]. However, due to finite
support of @ (x), whenever k € {a2/— (2K —2),----- ,a2) =1}, or k € {p2/ —
(2K — 2), -+ ,b2J — 1}, only some part of the support of ¢ (x) overlaps with [a, b].
Consequently, all the @j; (x)’s with supports having nonempty overlaps with [a, b] need to be
classified into three categories as mentioned in section earlier in section 1.1.

79



We have seen in the same section that whenever k € L or R, (pfk (x)’s are not normalized and
integrals of their product within [a,b] do not satisfy orthonormality conditions. So, the
determination of coefficients f]-k’s in the expansion (37) for k € L or R, are not straightforward
as in the case of L2 [R]. In order to evade the intertwining of fix, ke € L and f;, k € R, we
choose the resolution j such that (p}k (x), k € L and (pfk (x), k € R have no common support.
As a result

12 9h(x) R (0)dx =0 (38)

whenever ! € Landr € R. Multiplying both sides of (37) by ¢}, (x) and integrating over
[a, b] and using normalization conditions we obtain

NL 0o 0

0 Ip_a)2i—(2K-2)x(b-a)2i-(2K-2) O X

0 © N&
fL wa(;L)
=1 r@E@h (39)
o Wl f ()

where N = Lb—a)2 —2k-2yx{(b—a)2i—2K-2}
and NEOTR = [NLOTR],

Eqn (39) can be split into three sets of linear equations

NPl = whpEt,
N1l = ! f(z1), (40)
-}'\‘ Il,.f'll' —_— LAJI‘J'f.(.T[‘,).

From second set of eqs.(40) it appears that the coefficients for interior scale functions in the
expansion (37) are decoupled from each other. They give the direct relationship between the
value of the function at the nodes and the raw image fj (as in the case of L% [R]) as

k+<x>.

fie =5 FESD). @1

However, this is not true whenever k € L or R.
Solving first and third sets of eqs. (40) one can obtain the coefficients for boundary scale
functions in terms of values of the function at different nodes as
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a2?—1
L _ Ly—1 L ogr=Ln.
Fiie = 2 (N azi, 1—a2i “itf (@50
1= a2 —(2K-2)

L‘E{t:2’7(21\'72), ...... _”21‘71}(;42)
R st Ry-1 R iR
= > (N o IR

r =027 (2K -2)
ke {2l — (2K —2),------ b27 — 1Y43)

Thus, any function f(x) € L? [a, b] can be expressed in terms of Daubechies-K scale function
in resolution j = % with full and partial support and the expansion coefficients are given by
the formulae (42) and (43).

3.2a Quadrature formula for regular Integrand

In order to develop Daubechies scale function based quuadrature rule for numerical evaluation of
the integral of f(x) € L?[a,b ], we integrate both sides of (37) over [a, b ] and use dilation
property in combination with the normalizations satisfied by (p}k (x) .k € Ito get

b
/, Flo)de =~ QFea[f] = > f,", .u_f—‘,‘.

ke L
I R R
+ > Fipwir + > Fik wik (44)
kel kel
Although the evaluation of gﬂc is trivial, it depends only upon the nodesk+2<jx>,k € I, estimation

of f]i orR requires somewhat heavy calculations for each resolution j. Using (42)- (43) in the

R.H.S. of (44) and interchanging the sum over ! and k whenever they take their values in L or R,
one gets

a2i—1

QI frab] = 3 Qf wiy G +
I=a2i—(2K-2)
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b2i—(2K—1)

o (WP @i+

i =a2]
b27 -1 P n
b Q5 wiy J(T55), (45)
r=b2i—(2K-2)
where
, a2d—1 I 1 i
Q= Z (N ')kﬂ.zf.l—r:zi Wik:
k=a2i—(2K-2)
(46)
. b2i—1 R—1 R
Q_} r = Z (]\ )L-—IQJ,-;'—(:'ZJ w-j ke
h=b2i— (2K —=2)
(47)

The values of each of 2 °" R for Daubechies

K = 3 scale function is i] , and thus the quadrature rule (45) simplifies to
2
a2l -1

- ) 1 T
QUifiat) =2 X wf £k +
b2I — (2K —1)
> f(z5)+
i=a2J
b2Ji—1

> W@, 48
r=b2i—(2K—2)

where [ and wf are given in first rows of Tables 3a and 3b in reverse order.
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2K-1

Table -3a Partial moments I} (m) = J.x”"(p (x) dx

k

k 1 2 3 4
m
0 ] 0.39925843016888396  0.0967114471483401 | 0.01451327379758 | 0.000340910992750
2 438 353
1 | 0.4107722865307886 - 0.04376465059172 | 0.001366361972608
0.1964592138619757 | 918 421
2 | 0.36058536336405395 - 0.13140232857401 | 0.005472847072422
0.3860728286663880 | 3 5
3
3 | 0.1979965650492068 - 0.39255641017926 | 0.021906236564613
0.7163592582754439 | 9 5
4| -0.089889970488100 - 1.16595862431149 | 0.087621917431467
1.1889468759534776 | 9 0
5 1 -0.224798155972725 - 3.44014629236384 | 0.350212291754873
1.4864435793368804 | 6 0
6 | 1.3172165028297727 0.0172739817709077 | 10.0737997576725 | 1.398641487428037
8 2 7
7 | 10.53358287064466 9.558447281179674 5.581105888813937
29.2515264020680
6
8 | 48.17528203128408  48.41482738882302 | 84.1632347058770 | 22.25129265804047
4 3
9 | 181.31393039851662 184.7805665186955 239.868747129752 | 88.63263987297731
6
k
Table -3b Partial moments [ (m) = J.x”"(p (x) dx
0
K T 2 3 )
m
0 | 0.600741569831116 1.0967114471483401 0.9854867262024156 | 0.9996590890072496
1 1 0.406628881280091 1.013860381672856 0.773636517219151 0.8160348058382718
2 1 0.307559305774537 1.054217497804979 0.5367423405645771 | 0.6626718220661685
3 | 0.247463479864190 1.161819303188841 0.0529036347341277 | 0.4235538083487836
4 [ 0.207116317494341 1.3061732229597185 -1.048732277305258 | 0.0296044295247737
5 1 0.178147065382211 1.4397924887463665 -3.48679738295436 -0.396863382345387
6 | 0.156328838077650 1.4562713591365153 -8.600254416765106 | 0.0749038534793853
7 1 0.139297997719183 1.114433587184168 -18.5786455337042 5.091774979549905
8 ] 0.125629888270937 -0.11391546926800807 -35.8623227863220 26.04961926151454
9 | 0.114414815561820 -3.352221304617066 -58.44040191567418 | 92.79570534110113

3.2b Estimation of total error

In the process of obtaining the quadrature
rule (48) two types of approximations are involved. One is the ommission of the

detail space in the multiresolution approximation and the other is the numerical evalution of

coefficients through the formulae
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(46)-(47) in the approxiamtion space.

The bound in the error of the first can be approximated by Jackson’s inequality
— PifIl € ooy max|| DR

where || - || denotes the usual L? norm while the error for the evaluation of fj’s are given by the
formulae (33) and (36).

If the error in the expansion of f(x) in (37) is denoted by E;(x), then
b27 -1
f(x) = > firpin(x)+E;j(x) (49)

k=a2i—(2K-2)

where

£ () 7210,

T

ol (50)

In (50), € depends on the basis functions¢ (x)
and

b - 1
r= ([ 1/ @) dalz
(cf. Cohen etal (1995)).

Now integrating both sides of (49) between a to b after substituting fi, = f;; 1=pt. 61 pt.
k € L,I or R we obtain

b
I A f(;r) dao — QH"!I[f]‘ <

b27—1
I DR }ﬁ’|+|[ E;(x) dal.
k=a2l—(2K-2)
(51)
It may be noted that the function f(x) = x canbe expanded in terms of Daubechies- 3 scale
function in exact form, and thus there will be no error in the corresponding scale function based

quadrature rules. If the present one-point quadrature rule is employed to evaluate [ _1 X dx, then
also there will be no error.

We have compared the numerical results of some definite integrals of some regular functions

evaluated by the present method and by Hashish et al (2009) and these are shown in Tables 4a
and 4b.

84



Table 4a: [} /22 — 4z + 1dx

7 | Present method | Hashish et al
7 6.2 x 10710 15x 106
9 9.7 x 10712 9.8 x 1078
11 1.5 x 1013 5.0 x 10-°

Table 4b: fol cos(2?) dx

Present method | Hashish et al

J

7 42x10°° 20x 10 °
9 6.6 x 10710 1.3x10°¢
11 1.0x 1011 9.1 x 1078

Fromthe Tables 4a and 4b it is obvious that present method produces far better accurate results
than the method used by Hashish et al (2009).

Weakly singular integrals

3.3a Evaluation of integrals of the form
i G)

dx, 0<u<1
a (x_a)#

Let us consider the integral
b p.a(r
LQ,]A,. 0<p<l.
Ja (.J' - H)i

(52)

.u":}‘ [jt. (r] =

Using the scale transformation followed by
the change ofthe variable in (24) we get

whilp,a] =20 DIk ; () (53)

k—2Ja
where
2 (b—a) s (z)
L ¥k
w = ———dx. 54
bl = [ Slde. (54)

For the evaluation of wir[u], we assume
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the choice of j satisfies the condition 2/ (b — a) >> (2K — 1) to assure enough interior scale
functions within [0,2/ (b — a) — (2K — 1)]. Using the two-scale relation for @'y In (54), a
recurrence relation for wir[u] is found as

1 2K-1

w'f{‘,[,u] =273 Z hy wé‘!l_,+[(;t-). (55)
[l=0

From this relation it is obvious that the determination of wir[y] for particular k' > 0,
involves numerical values [ Jfor >
These quantities, usually called asymptotic
values, can be evaluated following the fact
that within the support of () >> I, the

factor Lbehaves like a regular function. Therefore, one may evaluate /[ ]’s, >> Ibut
within [0,2 ( — ) —(2 — I)] by either of the results obtained by using one-point
quadrature rule
1
[~ (+< >

or by using the series

=LY O
=0

Once the asymptotic values are known, [ ]’s for other positive values of ’can be easily
evaluated with the help of the formula (55).

The values of [ I'sfor—(2 —2) < ' < 0, are determined by solving a system of
linear

simultaneous equations generated with the

help of (53) whose solution for Daubechies-3

scale function for = éare presented in
Table Sa.
Table 5a  Numerical values of  _ , E]
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k — a2’ u*&
—4 0.002418025890650
-3 0.074507561327850
—2 —0.383612087110153
—1 1.438658438411280
0 1.171967541211238

Again, for 2/(b — a) — (2K —2) < k' < 2J(b — a) — 1, the scale function has the artial
support within the domain of integration [0,27(b — a) ]. However, due to the regular behavior of
x_lu within the partial support of ¢;/(x) one may estimate wir [#] by using either one-point
quadrature rule

1
Kt <z >0 2i(h—a)—e)"

or by summing the series

1 imtu( 1) (/1),
WU Gy 2 iy 2w

3.3b Integrals of the form fb q;’k();i dx,0 <v<1

Following a similar method with appropriate

modification, this integral can be estimated
by using the formula
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‘r"j.t\( r)

da
a (b—z)"

w;i[ll b) =

1v. r29b o
= 2(r=3)i / L),,d,r. 0<v<1l (56)
2Ja (ij - ,r)

where the two-scale relation for wfk is found as

7l21\'71
Wil b =2""2 3 hwll g ov.b]. (57)
=0

The numerical values of % 7k without prefactors for Daubechies-3 scale fumction are presented in
Table 5b.

Table-5b Numerical values of uJ ,)21[2]
ke — b2i '“’([)I},-
-5 0.4888247649751728
—4 0.5607046201248957
-3 0.6826054160639504
-2 0.9542008763684104
-1 1.6438144798009484
F(x)

3.3c Quadrature formula for Integrals of the type f

amdx, 0<pv<i1

We are now well equipped to develop quadrature formula for numerical evaluation of above
integral in terms of raw image in the Daubechies scale function dependent Meyer basis. We first
split the above integral into

b F(;l') I
a (b— r)" (o — n)'“L

_ fz,(-r) fulr)
o [’l (x— u)“ dz + /i (b— )udl' (58)

I[F;p,v] =

with
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Vo F@
@ =G (59)

and

Ja (z) = (F () (60)

r—a)l

Substituting expansion (37) for the regular functions fj,(x), fq(x) within their domain [a, aTJrh]

and [%h,b] respectively, and then using the values of the integrals whenever they appear, the

estimate for the weakly singular integral in (58) can be found as

(232211
1. . L
[[F; 0] = Z fo, j1wit
l=a2i—(2K—-2)
b27—1 I
+ Z fu._j r h*-"jlf-- (61)
’,=( (ig{))zJ

where the raw images f3, ;’s and f; ;-’s for f}, (x) and f (x) are determined easily.

This formula can be written in terms of values of the function f; (x) and f; (x) at different nodes
by reversing the summation over I or r and k as
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a2d—-1
MFipl = 3 Q0 @nf @)
[=a2i-(2K-2)

%2’.71\'
+ Y wip eyl (3
I =a2i
621 —(2K—-1)
+ 3 wh (v, L)l f(&1,)
r=( ) 2i- K41
b2l —1 » » R
+ b Qf (1)w () F (T (62)
r=>b2i—(2K-2)

The quantities ( )and () aed given by

a2i—1
Q.j;(’(“) = Z (N’l)i\_‘—luQ»'.l—uQ.’ u".;”-‘("""')'
k=a2i—(2K—2)
(63)
R b2 Ry—1 R
Q) = > (N e Zboi, r—bai wik(#0).
k=021 —(2K —2)
(64)

To check the efficiency of our formula (63) or (64) for evaluation of numerical values of weakly
singular integrals a comparison of results for the integrals
1e¥
fO ﬁ dx
and
1 |x|
Lpmtx

have been presented in Tables 6a and 6b.
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Table 6a : Relative error for [§ <= dax

T

J Method adopted | Method adopted
here by Hashish et al

7 5.9 x 1077 3.2x1072

9 3.4 x 1077 1.6 x 1072

11 1.5 x 1077 8.1x 1073

||

—I

Table 6b: Relative error for [1; da

i

j | Method adopted | n Method adopted by
here n-point formula

4 3.4 %105 20 1.3x 1072

5 8.4 x 1076 40 4.5 % 1073

7 48x10°7 80 1.6 x 102

These tables (6a, 6b) show that the method adopted here is superior to the methods adopted by
Hashish et al [2009] and Jung et al [??] for evaluating the weakly singular integrals.

Strongly singular integrals

3.4 Quadrature Rule for Cauchy principal value integrals

Numerical evaluation of Cauchy principal value(CPV) integrals within a finite domain by using
scale function is a major issue when wavelet analysis is invoked to boundary integral approach
for boundary value problems.

Encouraged by the successful application of Daubechies scale function based raw image
dependent quadrature formula for evaluating regular or weakly singular integrals within a finite
interval, we now try to develop quadrature rule for CPV integrals

. b T
I [f.t]z‘[, %(u f(x) € L2[a,b], (65)

with singularity ¢ within the interval (a,b). The underlying idea behind the construction of
formula is the application of formula (37) for f(x) in the integral of (65) and then evaluation of
the integrals involving product ﬁ and ¢, (x) within the interval [, b]. So, the prime objective
of numerical estimate of Cauchy singular integral is the evaluation of the integral
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o b ;fkm' I or R(I)
w-‘,,[f] =j 4 dux;
Jh a xr—t

2lg — (2K —2) < k < 2/h— 1.

(66)
Using dilation followed by transformation of variables, (66) can be recast into the form
. i o
Wi lt] = 220271, (67)
where
) 20 Aor 1 or 11‘( ,.)
& Pl :
Wi [27t] = [ E - d. 68
A [ ] J2iq xr— 27t ( )

Evaluation of integrals in (68) whenever the point ¢ is dyadic and the point of singularity 2/¢
falls beyond the supports of truncated scale function @k “ ®(x), has been discussed by Kessler
et el (2003). We just mention the formulae which will be used here. The values of wg[2/t] for
k € {2/t —{2K — 1},....27t} presented in Table 7, was calculated by Kessler et al (2003) by
extending the limit of the integral in (68) to (—on, ) using the properties of @ (x).

Table-7 Numerical values of wf,

k “’E}:k k wfj;‘_

—5 1| —-0.23891482 | 0 | 1.51431442

—4 | —0.30768589 | 1 | 0.55800637

—3 | —0.30259405 | 2 | 0.35636165

—2 | —1.75163320 | 3 | 0.26239622

—1 | —-0.17177891 | 4 | 0.20775723
510.17198219

The evaluation of w§[27¢t] for other values of k are carried out with the help of the recurrence
relation

Wi [271] = ""‘(L‘.”:A'f?Jr[O] =V2 Y I ”é}f’+!(o)
(69)
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in conjunction with the asymptotic value of wir [0] given by

' 1

Numerical values of w$[2/¢] whenever 2/a — (2K — 2) < k < 2/a — 1 and 2/b —
(2K — 2) <k < 2/b — 1 are performed by summing the series

1 "Max —1)
(=1) .
k=20t = (k- 27t)

w(;\ [27¢] ~

(-">[2J'u—k.21(—2] or [0,27b—Fk] (70)

accordingas 2/a — (2K — 2) < k <2/a — 1or2/b — (2K — 2) <k < 2/p-1.

Using the expansion (37) for f(x) € I?[a,b] in combination with the formula (66)-(68), the
integral of (65) can be written as

b f(r i b27—1 . .
/ @n’.l‘ ~ 2é Z f“ k «2{1_.(2”’3')
k=a2]—(2K-2)
(71)
where fjx’s are raw image of the function f(x) in the basis ¢ (x) determined by using formulae
(41)-(43). If we denote

a2l-1
'L A Ly—1 C rmi
Qfﬂ ()= > (NT)Za2i 1—ai @5(2'0)
k=a2i—(2K-2)
(72)
and _
b2i—1
QCR() = Nity—1 W% (271)
i (t) = Z ¢ )t.-fnz.u-fr,z.' Lk '
k=b2i—(2K -2)
(73)

then the quadrature rule in (71) can be recast into

93



a2i-1 .
Qrd= Y aff@uhfE+
,'=r|2j—(2]"_2)
b2l—-(2K-1)
Y e@nelii@ +
i =a2J
b2i-1 o
Z( | Qi rGER. 8
r=021—(2K-2

To verify the efficiency of the formulae derived here we have computed approximate value

of
1sin~1x
dx
1 X
at several resolution j and the values of Legendre function of second kind @3(x) from its integral
representation

dt

1rtp
6w=—3[ 22

t—x
-1
for several values of x at fixed resolution j = 5
by using (71) or (74). The relative errors of the approximate values are presented in Tables 8 and
9 and found to be reliable to apply these for the approximate evaluation of other CPV integrals.

; ‘ ' 1 sin—le
Table-8 Relative errorin [¢ = Jil S iy

in different j

J 3 5 7
1“1 72%x10°%|15%x105|21x10 6

Table 9: Relative error in the evaluation of Q3 (x) from its integral representation using (71) at
resolution j =5

1 1

T —= —= —=

2
Rel.Error | 27 x10°° | 3.3x10°°% | 1.7x 10°¢

1 3

1
3 2 a
99x10°% | 30x10° | 1.1 x10% [ 49x10°°

0

3.4 Composite quadrature formula for integrals having Cauchy and weak singularity
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During the last few decades the numerical evaluation of a combination of weakly singular and
Cauchy singular integrals became one of the important problems in numerical analysis and
computational mathematics. For example, it is well known that the singular integral equation of
first kind with Cauchy kernel

/'1 f(f)

o f_r;() —1<xr <1 (75)
-1

where the integral is in the sense of CPV, has four kinds of solutions:

1 f() = x/fo
+ A VA gy (76a)

t—x

\/1

Ao beingan arbitrary constant,

2. f(2) =5 4 ar,  (76b)

M e, (76c)

3. f(z) =%/

4. f(x) = ?12-\/1 — 2 f}l \/ﬁ @ dt (76d)

subject to the condition that
/ q( ) dt = 0. (76¢)

From the outward appearance of the integrals in (76a-¢) it appears that although the integrals
involved in (76a) and (76¢) can be evaluated numerically by using the scale function based raw
image dependent quadrature formula (71) and (74) respectively, integrals involved in other
solutions (76b-d) remain intractable due to presence of multiple singularities of different types
within the limits of integration. It is thus desirable to develop quadrature rule that may be called
composite quadrature rule which can estimate singular integrals with multiple singularities with
same order of accuracy as has been achieved in case of single singular cases.
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So, we consider the integral

b 1 g(t
I, v, x] = 9(t) dt
Ja (t—a)t (b—1t)Vt —ux
—a < x < b (77)
We hypothetically divide the range A = {2/a— (2K — 2), -+« - ,2/b — 1} of raw images
for regular part of the integrand into three parts ' ]
A = {Zja—(ZK—Z), ...... ,Zj(c—S)—1},AC={21(c — &) 2 (¢ + 68) —
Kyand, Ag ={2/(c+8) —K+1,----- ,2/b — 1} with a suitable choice for § > 0, and treat
gt
ap(t,z) = %. (78a)
N = (1)
.'ff'(‘f' "r) - ({,,j)l’(f,“)u' (78b)
S = g(t)
ga(t, ) = —a)’(t—z) (78¢c)

as regular functions within the support of scale functions spanned by the respective index sets
Ap, Ac and Ap . Then using the quadrature formulae for weakly and Cauchy singular integrals
(62) and (71) with the raw images for gy, gc g, the composite quadrature formula for the
integral in (77) can be found as

I, v, x] = Q[u, v; x]

(e—8)27-1

§ WL
= > 9; jk Wik T
k=a2i—(2K-2)

(e+8)29—K
c
> 9ok ot
k= (c—8)21
b2i -1 R
Z gr:;l,l‘ k "““‘_}.’:

k=(c+8)20—-K+1
(79)

We now compute the integral appearing in the fourth kind solution (76d) of Cauchy singular
integral equation of first kind (75) for
g)y=t"n =01,..4
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d f 1341y
and for x = toptsd

For evaluation of the integral

1 " dt 1
vt =230
we have partitioned the domain of integration
into [-1,—6] U [—§,6] U [§,1] withé = %at the resolution j = 5. But for the evaluation
of integrals for x = + %2 or+ ; , one needs to

. L0 . -
adjust both  and the resolution j to 7% and 6,7 respectively so that the condition

j= — K2 foreach component

(upper limit—lower limit)
of the partition [—1,—8], [=6, 8], and [§, 1] is satisfied. The approximate numerical values of
this integral evaluated by our quadrature rule have been compared with the numerical values
obtained from the exact expressions

(o] ifn=0
™ ifn=1
[1 m
—_— at={ _ _
._l\l‘-l_@“_” T ifn=2

w2+ itn=3

mr(a?+3) ifn=4
The absolute errors of our approximate values are presented partially in Table 10 and found
to be 0(10~5) at the minimum resolution j.

Table-10 Relative Emror

5
i

[N
[T
~Jool

&
J

el

X

ofll 1l
a0
wiH I
sl

0 [46x105]49x10°[26x10%[45x107*

1 [31x10°[12x105|[14x10%|36x107%

2 [32x10°[59x10°|81x10°[20x10°"

3 [37x10°%[82x10°%[52x10°|25x107*

4 [62x10°[657%x10° |43x10° | 22x10°

3.4 Observations

We have presented here the Daubechies scale function based quadrature rules for numerical
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evaluation of definite integrals involving regular, weakly singular, Cauchy singular integrands
and even a combination of them. Each formula consist of sum of product of some weight and the
value of the regular part of the integrand evaluated at the nodes. Weights and nodes involved in
the formulae are the moments of the interior and boundary scale functions. The efficiency of the
quadrature rules derived here has been tested by comparing numerical results obtained by present
formula and by other available methods for some examples for each case. An estimate of the
bound of error in the quadrature formula for regular integral has been obtained. It appears that
order of accuracy in the numerical evaluation of raw images for f € L?[a, b] by one-point
quadrature rule proposed here is good enough since it is comparable to the error in Daubechies-K
scale function based multiresolution approximation of any L? function in approximation
space (0 (G75=s)

atthe resolution ). One may, thus rely on the Daubechies scale function based formulae (45),
(62), (71) and (79) for the approximate evaluation of regular or singular (upto Abel and Cauchy
singularity) definite integrals with a desired order of accuracy at the appropriate resolution j.
Formula for numerical evaluation of definite integral with logarithmic singularity can also be
obtained in a similar way. This investigation further confirms that orthogonality is not a
significant issue for the bases of approximation space for L2[a, b] as pointed out by Jia et al [?]
in their studies of compactly supported wavelet bases for Sobolev spaces. It is expected that the
idea of one-point quadrature rule for the evaluation of raw image corresponding to interior or
boundary Daubechies scale function can be utilized for approximating numerical values of
Cauchy singular integral or hypersingular integrals with singularty at one edge of the integration
limit or finding numerical solution of singular integral equations. Some work in this direction has
already been carried out.

Solution of second kind integral equation with Cauchy type kernel using Daubechies scale
function, Panja, M. M. and Mandal, B. N.,J. Comput. Appl. Math241 (2013) 130-142
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The Mathematical Story in the Theory of Relativity
Prof. Subenoy Chakraborty

The aim of this lecture is to establish both special and general theory of
relativity as geometric theories. According to Einstein, space and time should
be on the same footing and we have four dimensional space-time. We start
with Euclide’s axiom that distance between two points in space is invariant and
extend it to four dimensional space-time for two neighbouring points then we have

dlF = de? + de2 + dad + X2di? (1)

to be an invariant quantity. Here, a factor 2. having dimension of velocity is
introduced on dimensional ground. Although space and time are on the same status
in (1) but still time should have a separate identity due to (¢) there is space
reversibility ie. x; — — x; but time can move only in the future direction, (i7)
from the point of view of mechanics one should have an identification of time co-
ordinate from eq. (1) after co-ordinate transformation. For this requirement, a
simplest modification to equation (1) can be chosen as

ds® = daf + da3 + d3 — Ndt® . @)

Here ds is termed as space-time interval and it is claimed that it should be invariant
under space-time co-ordinate transformation. For simplicity, we shall consider
linear transformations which make the above space-time interval to be invariant.
Interestingly, it is found that such a linear transformation is nothing but the Lorentz
transformation with . being the absolute velocity. Hence A can be identified as the
velocity of light. Further, from the invariance of ds” for two inertial frames S and §'
and using the Lorentz transformation between S and S’ one obtains the velocity

u? v2 W' s uw
\/“ﬁ\/l—ﬁ:\/l—v(l—v) ®)

where u, u' are the velocities of a particle in S- and S'- frame respectively and v is

identity as

the relative velocity between the two frames of references. In particular if ¥ and v
are in the same direction then one obtains the law of composition of velocity as
, U—v u' +v

U = — 1.C. U =
uv 4 Fay
1= 1+57

(4)

or in other words we write
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u=1' duv.

The set of all Lorentz transformations having relative velocity in the same
direction form a group with the above binary composition (known as Lorentz
group). Thus by a simple modification of Euclide’s axiom for a separate
identification of time, we switch over from Newtonian theory to Einstein’s special
theory of relativity and also the algebraic structure has been changed. We shall
now examine the geometric structure of the so constructed four dimensional space-
time.

Similar to the space-time interval, the quadratic form D = x>+ x° + x32 -
A’f* is invariant under Lorentz transformation (LT). Due to indefiniteness in sign,
D’ may have values +ve, —Ve or zero. We shall first examine the situation D” = 0.
In four dimensional space-time it represents a cone having axis along the time
direction. Thus, for points inside the cone we have D° < 0 while D* > 0 for points
outside the cone. Also it is easy to see that events occurring inside the cone have
velocity less than the absolute velocity, the velocity will be greater than A for
events occurring outside the cone and the events occur with absolute velocity on
the surface of the cone. This cone in special theory of relativity is termed as null
cone or light cone. All natural physical events occur inside the light cone and
outside the cone is physically inadmissible. Events occurring inside the cone are
termed as time-like events while events outside the cone are known as space-like
events and events on the surface of the cone are called null or light-like events.
Thus the whole four dimensional space-time is divided into two regions having a
common boundary as the surface of the cone. So the geometric structure of the
space-time is no longer Euclidean, rather pseudo-Euclidean or Minkowskian in
nature.

Now we shall discuss the geometric aspect of Einstein’s general theory of
relativity (GTR). The natural question that arises in Einstein’s GTR is how curved
geometry appears in the gravity theory ? We shall show that Einstein’s equivalence
principle leads to geometry of curved space- time. According to Einstein, the
inertial mass and the gravitational mass are equivalent (weak equivalence
principle) and it is verified experimentally. So the equation of motion of a particle
moving in a gravitational field can be written as

2~
m.i% = -mg?.
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As m; = m, (weak equivalence principle) so we have
27 ?
—=T7.
dt?
If we now transform to a non-inertial frame described as
1_, .
P gt
2
then we have
v
e
which shows that there is no gravitational force in the non-inertial primed system.
Thus we can say that the given gravitational force and the accelerated non-inertial
frame are equivalent and is known as strong equivalence principle.

Let {x;} be an inertial frame of reference and so we have the Minkowskian
line element

ds? = pijda'de? | mi; = diag(—1,4+1,41,+1).
Suppose {)} be a non-inertial frame of reference and we write
ds* = gapdy*dy” .

As in the Minkowskian space-time there is no gravitational force so we have

o
d x'

dr?

da’ dzt  dy®
Now, dr Oy~ dr

N 420t B ozt diycx N 827t dy‘“ dyﬁ B
dr2 — Gye dr? " Oyedyf dr dr
dQ,yo N dy# dyu .
= @ T earar (5)
2.1 Y
with T, = o ai (6)

p Oyrdyy Ot
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. . 2
Due to invariance of ds” we have

B dz' 92’
Ga s i ay& 8y3
Gas Pt dxt azt 9%

oy~ Marap o T Mop ooy
Q,Sargx + Qnorfw\

i (89)w ag,ur/ _ 85’)\#)
5 .

(7)

= D = Pi“géy - dxk Ozt axv
These are the usual christoffel symbols. We can interpret eq. (5) as the geodesic
equation in the non-inertial frame. Also in analogy to Newtonian theory fd,,v is
interpreted as the force term and the metric tensor components g,, represent the
potential term.

Using the christoffel symbols we can define the covariant derivative and
from the non-commutativity of the second order covariant derivative one can
define the usual curvature tensor.

Thus starting from the equivalence principle we are able to show that the
four dimensional space- time geometry is a curved geometry and is a Riemannian
geometry with Lorentzian metric. Then following Einstein’s logical arguments one
arrives the Einstein’s gravitational field equations

1 8
Rluu - GRQ#V - _C__.JT;_AJ/ .

In four dimensional space-time there are ten field equations which are not all

independent — six equations are independent and four equations are the constraint
equations.
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Nonlinear oscillations in a finite temperature plasma

Nikhil Chakrabarti
Saha Institute of Nuclear Physics, 1/AF Bidhannagar Kolkata-700064, India

The nonlinear collective dynamics of one-dimensional finite temperature plasma is investigated
using Lagrangian variables. An exact non-stationary nonlinear solution with a nontrivial space and

time dependence is obtained. The results demonstrate that the formation of nonlinear loi

lized

solitary wave-like density structures when nonlinearity is being balanced by the wave dispersion.
Solution predicts the catastrophic density collapse if nonlinearity overpower the dispersion.

I. INTRODUCTION

Perhaps, oscillation is the physical fact which was in-
troduced in our early school days and still we continue to
fetch a new direction in this area. Investigation of oscilla-
tions and waves and their nonlinear character in a plasma
is a very fertile area for fundamental research. Specially
the nonlinear exact solutions and their applications in a
complex plasma media is almost a virgin territory. Elec-
trostatic nonlinear oscillations and waves in plasmas are
of fundamental importance due to their applications in
laboratory and astrophysical situation. Starting from
the earlier works [1, 2], studies on nonlinear oscillations
and/or waves in plasmas have been an important topic of
increasing interest among various researchers, [3-9] even
in present days[10]. This interest is due the direct ap-
plications of these waves in plasma heating, [11] particle
acceleration, [12] etc. Although the problem of nonlinear
electron oscillations in a cold plasma has been investi-
gated extensively, very little work has been reported with
respect to the dynamics of a warm electron plasma.

For warm plasma, a pressure gradient term appears in
the governing equations of the cold plasma oscillations
and thus makes difficult to analyze the equations.[7] We
have learned from the cold plasma results that nonlinear
evolution of plasma oscillations very much depends on
initial conditions. Depending on initial conditions coher-
ent oscillations of field variables or singularity in density
occur at a finite time. [4] In this work, we have investi-
gated the effect of temperature on the space-time evolu-
tion of non-relativistic electron plasma waves. We have
assumed a slow variation of plasma wave compared to
equilibration time, so the temperature is taken to be con-
stant throughout our analysis. For the sake of simplicity,
we consider only the electrostatic mode without any mag-
netic field. This is a simplified model where the electron
plasma oscillations are investigated homogeneous and un-
magnetized plasma with finite temperature to elucidate
its nonlinear character.

II. BASIC EQUATIONS

In order to obtain the mathematical tools for spa-
tiotemporal evolution of large-amplitude electron oscil-
lations in a finite temperature plasma, we use fluid equa-
tions supplemented by - Maxwell’s equations for the elec-
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tromagnetic field. In one spatial dimension namely (z),
the basic equations are the continuity equation and the
momentum equation of electron fluid

0 AN, o .
" e )T "ax &)

a a el w2 On
(a*”%)”m**m*7% @

Where n, v,, —e, m, and v,(= /T/m) denotes the
density, z component of fluid velocity, charge, mass, and
thermal velocity of electrons, respectively. Here T is the
finite electron temperature, the wave electric field is E =
Fé,, where €, is the unit vector along the z direction.

As mentioned before above two equations are supple-
mented by the electric field evolution equation

8 8
<§ + va,%> E = drengv,. 3)
It is to be noticed here that to derive Eq. (3), we have
combined Poisson’s equation

— =dwe(ng —n)

Oz

and the # component of V x B equation, viz.,

0=—4 e+ =

TEeENnV, + Tt
We have also assumed that ions are immobile and they
form a fixed charged neutralizing background with con-
stant ion density ng.

III. NONLINEAR ANALYSIS WITH
LAGRANGIAN TRANSFORMATION
TECHNIQUE

Next, we present an exact solution of Egs. (1) - (3) by
using the Lagrangian variables method [4, 13]. In solving
these nonlinear equations, we transform from the Eule-
rian variables (z,t) to Lagrangian variables (&, 7) (such
that & =z at t = 0), where

55:227/07’0_,,(577'/)617'/ T=t (4)



so that £ is a function of both x and ¢, but £ and 7 are
treated as independent variables. In terms of these new
variables, the convective derivative

8 ‘o 8 8
at " e o7

becomes partial time derivative. Thus, we obtain from
Eq. (1)

ne,r) = aig0) 1+ [ ar —ms,r’)r, )

where n(€, 0) represents the initial (7 = 0) density distri-
bution in space. From this relation and Eq. (4) one can
write

n€,7) _ 8¢
w(E0) ~ B ©
In these new variables, the fluid equations become
4 /1 1 Ov, @
ar \n,)  n(£0) 8¢
dv, el vl On ®)
B = m R0
and
OF
o dmengu,. (9)

Combining Eqgs.
equation

() g (8

where w, = \/4we?ng /m is the typical plasma oscillation
frequency of electron fluid. This equation (10) together
with the equation (7) constitute a complete set to deter-
mine the dynamics of finite temperature electron plasma
oscillation.

Before obtaining nonlinear solutions of these equations
[Egs. (7) and (10)], we linearize these equations by writ-
ing n/n 5 0)=n=1+nand v, =0+ ¢ we then have

on Ay

- W (2 e 2 (R
E = %7 an B 3 w V= —Yp5 B 8:1; .

Supposing that all perturbed variables are proportional
to exp(—iwT + tkx), where w and k are the frequency
and the wave number, respectively, we finally have the
usual dispersion relation of waves in thermal plasmal4]:
w? = w2 + kv, This dispersion relation indicates that
the electron plasma oscillation is modified by the finite
temperature. This wave is dispersive as the group veloc-
ity, calculated from the above dispersion relation, comes
out to be finite and function of k.

(8) and (9), we obtain the following
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IV. ANALYTICAL SOLUTION AND
NUMERICAL SIMULATION

To find the nonlinear solutions of Egs. (7) and (10),
we introduce the following normalization: 7 = 7w, f =
wpé /v, and © = vy, fvy,. Then the above Egs. (7) and
(10) can be recast in the following normalized form:

o) e W

(88_:2 - 1) s %(5}70)% @_Z) LW

Hereafter we remove all hat for simplicity of notations
but all variables are understood as a normalized vari-
ables. Let us seek nonlinear solutions of Eqs. (11) and
(12) by introducing the method of separation of vari-
ables. Accordingly, we propose the solutions of the form
n(§,7) = x(§)¢(r) and v(§,7) = V(§)i(r). Inserting
these into Eqs.(11) and (12) and then separating space
and time variable equations, we obtain

& d
—glz (72 +1) ¥ = s 3 = 09
and
1d /1y dv
T <$> S = (14)

where n(¢,0) = x(£)6(0), v(¢,0) = V(£)5(0) and A, A
are the separation constants. Here ¢/(0) = ¢(0) = 1 as we
are working with the normalized variables and also with-
out loss of generality we can use ¢(0) = x(0) = 1. Solving
separately for spatial and temporal equations, one ob-
tains a complete solution. Note here that the above four
equations can be reduced to the following two equations:

d [ d? 1 d¢
ACIDIOR
and
d?Iny
— =\ 1
= (16)
where A(= Ai1Aq) is a separation constant to be deter-

mined later from the normalization condition. We readily
obtain a solution of Eq. (16) in the form

ye2

x=e /2

where we have used the boundary condition: x = 1,
d)Qdf =0at = 0 Finally using density conservation
f x(£,0)d¢ = 1, we obtain the separation constant
A= 2. With this value the spatial solution become

X:eﬂrsz. (17)



In order to get a complete solution, we have to obtain a
solution for the temporal part of Eq.(15). It should be
noted that in a typical laboratory experiment, the fluid
element always acquires an extra acceleration due to the
trapping potential and therefore to solve the Eq. (15),
we use the initial conditions at 7 =0, ¢ = 1, d¢/dr = 0,
and d?¢/dr? = « (constant). The second derivative of
¢ is the first time derivative of velocity amplitude which
follows from Eq. (16). Physically this constant might
be regarded as the initial wave acceleration depends on
the experimental parameters (laser and field strength re-
lated parameters) and acts as source of energy so that
it is related to the nonlinear strength of the wave. The
temporal equation (15) now becomes

ERIOR

with # as the integration constant and is found to be
B =1—X— a due to the above specified initial condi-
tions. Integrating Eq. (18) and applying the same initial
condition, we obtain the following first order ordinary
nonlinear differential equation

de

= =2/1—-¢2+2XIn® —28(1 — &),
=

(18)

(19)

where & = 1/¢ and + sign indicate the decaying and
growing branch of density amplitude ¢. Since we are in-
terested in the nonlinear solution we only consider grow-
ing branch corresponding to the negative sign in the right
hand side of equation(19). First we have integrate this
equation numerically for ¢(7) using MATLAB to obtain
the time dependent part of the density. The solution
for density is given in figure below for a typical value of
. The time variation of the density amplitude shows
nonlinear behavior as expected. To write the complete
solution, we also need to convert the Lagrangian vari-
ables to Eulerian and is done by means of the Eq. (6),
which is given by £ = xz¢. Therefore, the density in terms
of original (z,t) variables becomes,

n(z,t) = p(t)e "0, (20)
where, ¢(¢) has to be determined from Eq.(19). The
speciality of this newly found solution is that both the
amplitude (~ ¢(t)) and the dispersion (~ ¢(¢)~2/27) has
a functional dependence on time. So this solution can
easily capture the singularity that might occur due to the
intrinsic nonlinearities of the physical system in course of
time. The mean electron velocity of the plasma fluid can
easily be obtained by a V(£) multiplied by #(7), which
in terms of the original (z,t) variables becomes,

d 1
t) = t)— | —= | . 21
vl =200 ( 51 ) 1)
We emphasize that the obtained expression of density
and velocity given in Egs. (20) and (21) are the com-
plete solution of full nonlinear system of our governing
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FIG. 1: In the above left side figure shows the normalized
density solution for o = 3. The figure shows that a coherent
structure is formed and increased in amplitude in time due to
nonlinearity. The maximum amplitude n/no = 3.5 attained
at wpt = 2.1. When dispersion overpower the nonlinearity
amplitude decreases.

equations. We have pictorially represented the density
solution in space and time for different values of nonlin-
earity parameters « as shown in Fig.(1) and (2). Ini-
tially at 7 = 0, the spatial profile is Gaussian like na-
ture and evolves in time. The figure (1)shows that a
coherent structure is formed and increased in amplitude
in time due to nonlinearity. The maximum amplitude
n/ng = 3.5 attained at w,t = 2.1. The parameter o
in these solutions controls the amplitude of the density.
When nonlinearity feeds energy in the long scale wave
amplitude of the wave increases and spatial scale become
narrower and at scale vy, /w,, the dispersive effects are
operative and it overpower the nonlinearity. As a result
the amplitude decreases and solution spread in space as
indicated in figure (1). Later, the analytical solution for
sufficiently large amplitude wave clearly demonstrate this
phenomena observed by the numerical simulation.

On the other hand, for large value of nonlinearity a
density steepening occurs as a result singularity arise as
time progresses and eventually density collapse occur in
time when dispersion fail to prevent the nonlinear con-
vection. At the very close to the collapse point the den-
sity becomes stronger peaked and narrower and form 56—
function like structure as shown in the Fig. (2).

We further try to find the root of the density collapse
in time by analyzing Eq. (19) in the sufficiently large
amplitude limit i.e. for ¢ > 1 (or & < 1). In this
situation we can approximate In® ~ (& — 1) — (& —
1)2/2 + --- . Substituting in Eq. (19) integrating and
using the initial condition as before, we finally obtain

P(7) 7= {1 — 12_‘(_1)\ sin? < 12+)\ T>}

-1

(22)

With this ¢(¢) the total expression of density can be writ-



FIG. 2: In the above left side figure shows the normalized
density solution for e = 4w. The figure shows that a den-
sity singularity arises increased in amplitude in time due to
nonlinearity. The maximum amplitude n/no = 7 attained
much earlier time at wyt = 1.5. In this situation space scale
become narrower and dispersive effect can not balance the
nonlinearity eventually density collapse.

ten as is
n(z,t) ~ 10 exp [-7&?], (23)
[1 — —{"f‘)\ sin? < 1;)‘ TH
where
z
&y . (24)
[1 — —12+°‘>\ sin? < 12+)‘ TN

This relation between ¢ and x clearly shows that the
relation is linear in space but strongly nonlinear in time.
It is evident that as time increases for fixed £, x decreases.
The spatial width of the solution decreases and amplitude
increases which is evident from the figures. With the ¢(¢)
given in En. (22), the mean electron velocity v(&,7) is
found to be

T

)
Gl

azx sinQ(”l*)‘

\/1—0—)\[1711—“)\::111

v(x,t) = —

|

(25)

Thus the Eq. (23) represent the exact non-stationary
solution of Eq. (11) and (12).

V. CONCLUSIONS

In this work, we have used Lagrangian fluid description
to study the nonlinear collective dynamics of large am-
plitude oscillations in a one-dimensional electron plasma.
We have formulated and solved the full set of fluid equa-
tions both analytically using the Lagrangian variable
technique and numerically using MATLAB. In the limit
of strong nonlinearity (a ~ 41), the evolution of the den-
sity is strongly time-dependent, becoming singular in fi-
nite time. This leads to a catastrophic density collapse
in a warm plasma. We have found an approximate ana-
lytical expression for the singularity in the temporal so-
lution. To characterize the obtained solution if we ignore
the thermal effect then Eqgs. (11) and (12) are decou-
pled Eq. (12) become linear in Lagrangian frame. The
solution is just oscillations with frequency w,,. Therefore
initially (¢ = 0) we can take arbitrary density/ velocity
perturbation with an arbitrary spatial scale. For finite
temperature effect this is not possible. If one look at
the linear wave frequency ie. w? = w?(1 4 k%) where
| = vy, Jw,, which gives an unique value of & for a given
w. Therefore only one mode can excited. This feature is
capture by our separation of variable method where spa-
tial form is determined from equation not initially shaped
arbitrarily. By taking this theoretical approach, with the
subsequent observations in experiment a coherent struc-
ture formation and subsequent destruction by singularity
formation could be studied to provide a new avenue for
investigating the behavior of interacting thermal plasma.

VI. ACKNOWLEDGEMENT

I would like to acknowledge Prof. Samiran Ghosh, Dr.
Sudip Garai, Dr. Anwesa Sarkar, Dr. Manjistha Dutta
and Dr. Chandan Maity for their contributions.

[1] A. I. Akhiezer and R. V. Polovin, Sov. Phys. JETP 3,
696 (1956).

[2] J. M. Dawson, Phys. Rev. 113, 383 (1959).

[3] G. Kalman, Ann. Phys. 10, 1 (1960).

[4] R. C. Davidson and P. P. Schram, Nucl. Fusion 8, 183
(1968).

[5] T. P. Coffey, Phys. Fluids 14, 1402 (1971).

[6] R. C. Davidson, Methods in Nonlinear Plasma Theory
(Academic, New York) (1972).

[7] E. Infeld and G. Rowlands, Phys. Rev. Lett. 58, 2063
(1987).

108

[8] S. Sengupta, V. Saxena, P. K. Kaw, A. Sen, and A. Das,
Phys. Rev. E 79, 026404 (2009).

[9] T. Coffey, Phys. Plasmas 17, 052303 (2010).

[10] A. Sarkar, C. Maity, and N. Chakrabarti, Physics of Plas-
mas. 20, 122303 (2013).

[11] P. Koch and J. Albritton, Phys. Rev. Lett. 32, 1420
(1974).

[12] T. Tajima and J. M. Dawson, Phys. Rev. Lett. 43, 267
(1979).

[13] N. Chakrabarti, C. Maity, and H. Schamel, Phys. Rev.
Lett. 106, 145003 (2011).



Irregular flow of blood through a narrow arterial tube in presence of
overlapping stenosis
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Abstract:

The aim of the present study is to investigate the nature of blood flow through an arterial tube
under overlapping stenotic condition. The expressions forFlux and resistance to flow with
different stenosis height have been studied here by considering the blood as pseudo plastic
power law type non-Newtonian fluid. The numerical results for various parameters are shown
graphically and discussed.

Key Words: Overlapping Stenosis, flux, resistance to flow, power law fluid.
Introduction:

Blood flow related problems are quite different from all other fluid flow problems due to its
unusual fluid properties, rhythmic action of heart valves and high Reynolds number of
blood.So actual mathematical model of blood flow problems is unknown to us. Many
Mathematicians have investigated some mathematical models to study the blood flow
characteristics by considering the blood as Newtonian fluid under stenosed condition (Young
[1], Lee and Fung [2], Shukla et. al [3]). But since blood consists of formed elements like red
cells, white cells and platelets in an aqueous solution, blood behaves like a non-Newtonian
fluid under certain conditions. So it is more appropriate to consider the blood as non-
Newtonian fluid when it present as a mathematical model.

Blood flow characteristics can be altered significantly by the arterial diseases such as
aneurysm and stenosis. Stenosis is a serious cardiovascular disease. Stenosis is formed by the
deposition of fatty substances like fats/cholesterol in the lumen of the artery. If stenosis is
formed, bore of the artery becomes narrow and so normal blood flow is disturbed abnormally
whose consequences cause several diseases like stroke, hypertension, brain haemorrhage etc.
some researchers have presented two layered mathematical models to study the haematocrit
effects on blood flow (Mazumdar et. al. [4], Sanyal and Maiti [5], Sanyal and Sarkar [6]).

Few medical researchers have analysed mathematical models to discuss the effect of stenosis
on blood flow by considering blood as various types of non-Newtonian fluid such as power
law fluid, Herschel bulkley fluid, Casson fluid and Bingham-plastic type fluid (Richard et. al
[7], Tu et. al [8], Siddiqui et. al [9], Biswas et. al. [10] and Kumar et. al. [11]. They have
considered the effect of single stenosis. But since stenosis may have developed in series or in
overlapping form, many researchers have studied the effect of overlapping stenosis on blood
flow through an arterial tube by consider blood as non-Newtonian fluid ( Chakraborty et. al.
[12], Layek et. al. [13] and Srivastava et. al. [14]).
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In the present analysis I have considered a mathematical model to study the non-Newtonian
behaviour of blood in presence of overlapping arterial stenosis by considering blood as
pseudo-plastic power law type fluid.

Mathematical Formulation:

Let us consider the steady flow of blood through an inelastic constricted arterial tube which is
axially symmetric but radially non-symmetric.

The geometry of stenosis can be taken as [13]

b _R@

RO
~1- Zstg [11(z—d)L3 — 47(z — d)?L3 + 72(z— d)°Ly —36(z — d)*], d <z < d + L,
=1, otherwise, €8

Where R(z)is the radius of the tube in the stenotic region, Ry is the radius of the tube outside
the stenotic region, R, is the radius in the plug flow region , Lg is the length of the stenosis
and d indicates its location, § is the maximum height of the stenosis. Projection of stenosis at

L L 5L .. Lo 38
the two positions is denoted by zasz=d + ?0, z=d+ TO. The critical height is taken as —at

z=d + % from the origin.

T Tl /}
/J [ & I|\ £

Fig.1: Geometry of a uniform tube of circular

cross section with overlapping stenosis

The equation governing the flow is given by
2
—L=-Z (rTrz)' (2)

in which 7,., represents the shear stress of blood for Bingham-plastic fluid and p is the
pressure gradient.
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The relationship between shear stress and shear rate is given by

du
Trz = ﬂ(;)n > Trz 2 To

du

ar =0 Trz <Tp (3)

Whereu standsfor the axial velocity of blood;7q, the yield stress and p, the coefficient of
viscosity of blood.

The boundary conditions are
()T, is finite at 7 =0
(i) u=atr=h(z)
(iii)Z—j = Oatr=0if 7,, < T, )
Solution:
Integrating (2) and using the boundary condition (i) of (4) we get
pr

TTZ 2
For simplicity we take n =" in (3)

From (3) we get by using the boundary condition (ii) of (4)

__r 3_ .3
u712u2(h ™) ®)

Since Z—: = 0 atr =1, the upper limit of the plug flow region is obtained as

_ 27,
=7
The plug velocity u,, is given by
P? 13 3
=1 (1 = 7) ©

The volumetric flow rate i.e, the flux is given by

1o h
Q=2 [f Uprdr +f urdr]
0 by

0

_ PR 1'05
T 12p2 (1 N E) ™
Thus
ap _ o _ _—25Q
az NG ®)

The pressure drop Ap across the stenosis between z=0to z =L is obtained as
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Lap
Ap = —d
p foaz g

L 1
= —2#1/5Q fO WdZ (9)

Introducing the following non-dimensional quantities we get

-_Z 5_ 06 1 _ R 5 _ @
= L’6_ Ro N(z) = RO’Q " mURZ’
- _ To — _ _Trz _ P
0= wU/Ry Trz = “wU/Ry - ,u.UL/Rg’ (10)
in equation (9) we finally get (after dropping the bars)
_ 1 —2u5Q
Ap = |, —(hs_rg)l/zdz (11)
The resistance to flow A is defined as
_dp_ 1 2u/5Q
A= 2 0 TEr5)og z (12)

The pressure drop in the absence of stenosis (h =1) is denoted by Apyand is obtained from
(11) as

1 -2u5Q
bpy = [ e dz (1)

The resistance to flow in the absence of stenosis as

2. =Ary f1—_2“m
N 0 (1-1$)Y/2Q

_ -5

(-2
Hence the normalised resistance to flow 2 is given by
T 1 _psyy2 i1
A== A=) e de (14)

Results and discussions:

To illustrate the flow behaviour the results are shown graphically with the help of MATLAB-
7.6.The numerical results are shown graphically and discussed for various values of the shape
parameters.
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Figures 2-4 represent variations of flux @ for the variation of stenosis length Ly, z and d with
the variation of stenosis height §. It is observed that Q decreases with the increase of
,Loandd for fixed values of the other parameters, but it increases when z increases as stenosis
develops.

Figures 5-7 depict the variations of non -dimensional resistance to flowa with the variations
of stenosis height for different values ofLy, d and z. It is found that as stenosis increases,
resistance to flow A increases with the increase of d but opposite phenomenon occurs when
Lgand z increase.

Conclusions:

Blood flow characteristics mainly dependon flux and resistance to flow. It is clear that
resistance to flow increases with the increase of stenosis height for which several
cardiovascular diseases occur. So from clinical point of view this model may be helpful for
further study of the medical researchers relating to blood flow problems.
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Abstract

In this chapter discrete time Markov chain process is used in prey predator model. Here
we have developed a method to find the probability of reaching the (0,0) before reaching any
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1 Introduction

One of the major challenges in ecology is to predict the patterns in the risk of extinction of species
from their demographic history and find the physical or behavioral features showing such patterns.
Different demographic characteristics across wide range of taxa are extremely useful in identifying
the “extinction vortices” [16] which describe the extinction pattern. Stochastic population models
serve as fundamental mathematical framework in modern ecological theory and applied in various
interdisciplinary research areas including population ecology [21], epidemiology [22], conservation
biology [26] and many others. For example, discrete and continuous time Markov chain models
and stochastic differential equation models are useful in many areas of population biology. In
general the Kolmogorov differential equations (often termed as Master equation [7]) are developed
to compute the transition probability distributions when the rates of different possible transitions
are provided (e.g. birth and death rates). The equilibrium distribution may be obtained for large
time by taking time sufficiently large.

The predator prey models governed by deterministic differential or difference equations play
a crucial role in quantitative studies of the dynamics of natural populations. The dynamical
characteristics of the systems, viz. stability of equilibrium points, stability of limit cycles etc.
can be predicted uniquely in the deterministic set up. However, while applying these models
in natural populations, it is more realistic to consider the stochastic dynamics of the system,
where the randomness is generated either from variation among individual growth rates or due
to environmental fluctuations. In such cases, the characteristics of the deterministic models are
replaced by the probability statements. For example, in stochastic version of the logistic model,
the equilibrium point is replaced by the equilibrium distribution, which is represented by the cloud
points around the equilibrium point rather than a fixed value [31]. The main difference is that, in
logistic growth, the carrying capacity is the only stable point, hence the population never reaches
zero for positive value of intrinsic growth rate, whereas, in stochastic environment there is always a
positive probability associated with the extinction of the population and thus making the stochastic
model framework more appealing in real life scenarios [40, 42].

The interest in the stability of predator-prey system has long been a well discussed issue since the
theoretical work of Lotka [27], Volterra [48] and the experimental work of [15]. Several studies have
already been carried out on both deterministic and stochastic set up of predator prey dynamics. The

probability of reaching to the stable interior equilibrium point is also important. Because once the
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population size reaches stable point it remains there irrespective of time. Given a population size
of prey and predator what amount of risk of extinction both the interacting population face, is an
important aspect of population dynamics. Here the risk of extinction is quantified as the probability
of reaching the extinction equilibrium, before reaching stable states [23, 44]. Recently [44] used the
stochastic differential equation model including demographic stochasticity and predicted the time
to extinction and probability of extinction for the Atlantic Herring populations. They have used
the mean time to extinction from the distribution of the sojourn time that, the amount of time
spent by the species at each population size given an initial abundance [20].

To incorporate the randomness in dynamical system mainly three types of stochastic models
are used and they are discrete time Markov chain (DTMC) model, continuous time Markov chain
(CTMC) model and stochastic differential equation (SDE) model. The DTMC models have already
been applied to describe the stochastic dynamics of single species populations [4, 44]. In this
chapter, rather than using diffusion approximation, we shall use the continuous time Markov chain
model (CTMC) to predict the different extinction measures viz. expected extinction time and
the probability of extinction given a starting population size. We shall also discuss the interplay
between the deterministic and corresponding stochastic analogue of the predator prey system. The
CTMC model is a popular stochastic modeling technique to answer various questions in ecology,
invasion biology, species coexistence of single or multiple species [5]. We are interested to derive
the persistence time of prey and predator separately. [3] has used the similar method in order to
derive the persistence time for both of the populations.

In this chapter we have used DTMC process in prey-predator dynamical system to obtain the
joint probability distribution of prey and predator and mean persistence time of the same. We
have also developed a method to find the probability of reaching to the extinction before reaching

to interior equilibrium. The stationary distribution is evaluated.

2 Background

We start our discussion in this section with a general predator prey system, where the different
ecological mechanisms such as predation, death, birth etc. are modeled by general functions and
eventually we shall show applications with specific examples with stipulated biological scenario.
The approach will be applicable to populations of the same species or to populations of different

species. Populations of the prey or predator species may differ, for example, by geographic location
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or by interaction status of them. Consider the following prey-predator dynamical system,

dzsft) = bi(z(t)) — di(z(t)) — g(z(t),y(t)) M
d?éligft) = ag(z(t),y(t)) — da(y(t))

where z(t), y(t) denote the population densities of the prey and predator at time ¢ respectively;
by () is the birth rate of the prey species; d;(.)(i = 1,2) are the death rates (natural) of the prey and
predator populations respectively. The initial conditions are being non-negative, z(0) > 0,y(0) > 0.
The birth and death rates may be density dependent or density independent, described by the
biological background of the two interacting species. The function g(z,y) denotes the inter-specific
interaction between the prey and predators, known as predator’s functional response. « is the
conversion efficiency of ingested prey into new predators and assumed to lie between 0 and 1.

The stochastic formulation of the single species dynamics in absence of predators are studied
by several authors. Density dependent growth models, often mimicked by logistic and generalized
logistic law of population dynamics have been elaborated in the above cited literatures. In absence
of predators, model (1) reduces to a single species model with birth and death rates b;(z) and
dy(x) respectively. Various stochastic formulations of the logistic model have been studied in the
literature [28, 30, 29, 33, 34]. In general, there are infinitely many choices of functions available for
birth and death rates for different choices of parameters. The choices of the functions are mainly
driven by the collected data on the species under investigation [9]. In addition, while studying real
populations, there is generally other information also available such as, life expectancy (hence the
estimate of intrinsic growth rate). For example, in modeling the muskrat population dynamics in
Netherlands, [30] used the estimate of average life expectancy to obtain the estimates of intrinsic
rate parameters, that help them to uniquely chose the value of the rate parameters.

Model (1) serves as the deterministic skeleton in formulating analogous stochastic models that
account for the variability in births, deaths, transmission and recovery. We derive a Continuous
Time Markov Chain model (CTMC), where time is continuous but the random variables for the
states are discrete. We shall represent eqn. (1) as a two dimensional birth-death process. In the
stochastic formulation we assume X (t) and Y (¢) are two discrete random variables representing the
number of prey and predator populations respectively taking values in the state space {(z,y) : z =
0,1,...M;y = 0,1,... N} where M and N are the maximum sustainable population size of prey
and predator population respectively. Let the time step At be sufficiently small such that there
can be a change in the population size of at most one, i. e. AX(t) = X (t + At) — X(¢) € {-1,0, 1}
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and AY (¢t) =Y (¢t+At) - Y (¢) € {—1,0,1}. Thus the change in population size AX (¢) and AY (t)
neglects multiple births, deaths, or transformations in time A¢ which have probabilities of order
(At)2. The infinitesimal probabilities of the birth death formulation of model (1) is depicted in
Table 2. For example, (AX (t), AY (¢)) = (1,0) denotes event of the birth of a prey and no change
in predator abundance in time At, whose probability is equal to the product of the probabilities
of one birth of prey (b1 (z)At) and no death of predator ((1 — da(y)At)). Similarly probabilities of

the other events are defined.

Event Transition Transition probability
Prey birth and no birth or death of (z,y) — (z+1,v) b (z)At(1 — da(y)At)
predator

One death of prey due to predation (z,y) — (z — 1,y +1) ag(z,y)At

No birth or death of prey and one (z,y) — (z,y — 1) da(y)At(1 — by (z)At)

death of predator

Death of one prey due to intra- (z,y) — (z—1,y) dy(x)At + (1 — a)g(x, y)At
species competition or predation

and no birth or death of predator

No birth or death of either popula- (z,y) — (z,v) 1—[bi(z) + ag(z,y) + da(y)
tion

+dyi(z) + (1 — a)g(z,y)|At

Table 1: Possible changes in the predator-prey densities with the corresponding probabilities

The transition probabilities defined in Table 2 which describes a continuous time Markov chain
model for the random variables X (¢) and Y(t) [20, 1, 5]. Note that, here the randomness in
population growth rate is due to demographic stochasticity which is the chance variation in the
number of individual births and deaths and usually modeled by using birth and death process. So
in the CTMC, demographic stochasticity is the main source of variation affecting the population

dynamics which becomes particularly important at low population sizes [10]. So the above model
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does not depict the random variations in the environmental conditions although the environmental
fluctuation has significant effect on the population dynamics, for example, effecting the survival

and reproduction rates [25].

3 Derivation of joint probability distribution

In this section we will derive the joint probability distribution of prey and predator using the
transition probabilities given in Table 2. The state of the system at time ¢ can be characterized by
the probability ps,(t) of having z individuals of prey and y individuals of predator, where (x,y)
takes values in {0,1,..., M} x {0,1,..., N}, in notation, p.y(t) = P{X(¢) = z,Y(t) = y}. The
probability of having the same number of individuals of both species at time ¢+ At can be obtained

from the following equation.

Pay(t +AL) = pa_1y(t)bi(x — DAL + pory y1(t)og(z + 1,y — DAL+ payry(t)
[di(z+1) + (1 — )g(z + 1, 9)] At + poyr1(t)da(y + DAL +
(1= (b1(z) + 9(z,y) + di(z) + d2(y)) At]pey(t)

where 0<z< M,0<y<N.
In addition we will have the following cases

L. poy(t+At) = p1y-1(t)ag(l,y— DAL +p1y (¢)(di (1) + (1—a)g(1, y)) At +po 11 (t)da(y + DAL+
[1 = (61(0) + g(0,y) + d1(0) + da(y))At]poy(t); 0 <y < N

2. peo(t+At) = pr_10#)b1 (2 — DAL+ pp1 ()da(D) At +prr1oldi(z+ 1) + (1 —a)g(z + 1, 0)]At +
(L= (bi(z) +9(x,0) + di(z) + d2(0)) At]pso(t); 0 <z < M

3. paro(t + At) = par_1.0(t)b1 (M — )AL + par (£)da (1AL + [1 = (by (M) + dy (M) At]paso(t)
4. pon (t+AL) = prv-1(t)ag(l, N=1)At+piy (8)(di (1) +(1-a)g(L, N))At+(1—d2(N)At)pon ()
5. pun(t+At) = prr—1 ns ()bt (M — DAL+ [1— (b1 (M) + g(M, N) +d1 (M) + da( N ) Atlparn ()
6. poo(t + At) = pro(t)di (1AL + por (t)da(1)At + poo(t)

7. pary(t +At) = par—1,y(H)o1 (M — DAL + [1 — (b1 (M) + g(M,y) + d1 (M) + da(y)) Atlpary (t) +
Prry+1(t)da(y + DAL 0 < y < N;
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8. pan(t+ At)

= pa—1,N(O)b1(z — DAL+ poi n—1(t)og(z + 1, N = DAL+ pypg v (0)[di(z +1) +
(1 —o)g(z + 1, N)JAt +[1 = (bi(2) + g(z, N) + d1(2) + d2(N))At]pan(t); 0 <z < M;

This system of equations generates the probability distribution of the prey and predator popu-

lations at time ¢ + At which can be obtained using numerical methods.

3.1 Marginal distribution of prey

In this section we denote the marginal distribution of the prey and predator populations by p,. and

p.y respectively. Let p,.(t) = P{X(t) = 2} and Pi = P{X(t + At) = j|X(t) = i}.

Pt A

P{X(t+ At) =i+ 1|X(t) = i}
P{X(t+At)=i+1NX(t) =i}

P{X(t) =i}
SUP{X(t+A)=i+1NX(t)=inY(t) =k}
SP{X@®) =inY(t) =k}
SRP{X()=inY () =k}P{X({t+At)=i+1X(t)=inY(t) =k}

SP{X() =inY () = F}

>k pikbi(D)AL
Zk Dik
b1(i)At (2)

P{X(t+At)=i—1X () =i}
P{X({t+At)=i—1NnX(t) =i}
P{X(t) =i}
SEP{X(t+A)=i—1NX({t)=iNY () =k}
SP{X(t)=inY () =k}
SRP{X@) =inY () =k}P{X(t+At)=i—-1|X(t)=inY(t) =k}
YpP{X(@t) =inY(t) =k}
Sepie (g(i k) + di(i)) At
kazk

W +di(i)] At v
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piAL) = P{X(t+At) =iX(t) =i}
P{X(t+At) =inX(t) =i}
P{X(t) =i}
SLP{X(t+ A =inX(t) =inY(t) = k}
SP{X() =inY(t) =k}
SLP{X(t) =inY(t) = kYP{X(t + At) = i|X(t) =inY () = k}
S P{X(0) =inY (D) = k)
2k Pik (1= (b1(i) + g(é, k) + da (i) At)

kai,k
2k Pik (1= (0a(3) + 9(i, k) +du (i) At)
kai,k
. . Zk pikg(i»k)
= 1-—1b +d + == At
1(1) + di(3) S o
Hence we can write that,
PR(AL) = (DAL, i=j-1j€{23,...,M}
= M)At i=j+1,5€{0,1,...,M—1}

= 1-XMDAt, j=i, je€{0,1,... M}

=0 otherwise
where

M) = bid)

Moli) = dﬂiHW
NG = 0i() +d) + ZELEAEE

Zk Dik
Then, p,.(t + At) satisfies the following difference equations,
pa-(t+ AL = Mz — DApe_1.(t) + Aa(z + DAtpyp1.(t) + (1 — Aa(2)Ab)pa. (t)
p1.(6) A (DAL + po.(t)

Al (]\J — 1)Atp]\,j,1.(t) + (1 — Ag(]\/f)At)p]\,j.(t)

po.(t + At)

par.(t + At)

where x=1,2,...,M —1
The difference equations, project forward in time, can be expressed in matrix form as

px(t+At) = Ppx (1), pry (0) = 1
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where px (t) = (po.(t), p1.(t), ..., par-(t))T and the matrix P is the one step transition matrix given
by

1 (DAt 0 0 0

0 1—Xs(DAt  M(2)AL 0 0

0 MMAL  1—2At  M(B)AL 0
P=1|0 0 M)A 1—X3(3)At 0

0 0 0 0 o Aa(M)AE

0 0 0 0 s 1= (M)At

To ensure that P is a stochastic matrix (non-negative and column sum to 1) it is assumed that

As(x)At < 1.
me{{nz?f.(uw} s(@)At =

The equilibrium (0,0 is the absorbing state, since, once the population reaches this state, the
process stops. Thus, poo(At) = 1. Eventually population extinction occur with probability 1 i.e

limy—00 po.(t) = 1. Now as At — 0 the system of difference equations (7) reduces to

dpg.t(t) = pr(DX(l)
dps.t(t) = M@= Dpe_r.(t) + Ao (@ + Dpast. () — Ag(2)pa. (t) (8)
dpﬁ%;(t) = MM = Dpar—i.(8) = Ag(M)par.(t)

Following [35], a convenient notation for the system of equations (8) is given by

o=
where A is given by
—23(0)  Aq1(0) 0 0
M) —N0) N1 0
0 @) M@ 0
0 0 0 - —X(M)

In absence of predators the above system of equations are well studied in the literature. For
example, when the birth and death rates are governed by the logistic and power law logistic model,
the associated equilibrium probability distributions are found in [28, 30]. In such cases, the ana-

lytical solutions of the differential equations can not be obtained, however, for small M, numerical
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methods using Matlab or Mathematica [49] can be employed to solve the above systems of equa-
tions. [38] obtains a representation of the solution using Laplace transforms and continued fractions
approximations. [2] studied the stochastic dynamics of the Allee effect in the context of invasion
biology by suitable defining the birth and death process from the deterministic skeleton of the

model depicting the Allee effect.

3.2 Marginal distribution of predator

‘We shall implement the same technique in order to find the marginal distribution of the predator
populations, i.e.
pii(At) =P{Y(t+At) =j|Y(t) = i}.
We have the following expressions for the marginal distributions of the predator.
SuP{X@E) =knY () =i}P{Y(t +At) =i+ 1| X(t) =kNY () =i}

i1,
P, (A S o
_ > pricg(k, i) At
kaik
_ o2 Prigkii)
B >k Pri JAd
p?l""(At) SRP{X(#)=knY(t) = z}IP’{YZ(f +4t) =i—1X({t)=knNnY () =i}
k Pki
_ kakidQ(i)At
kaki,
= do(i)At
pg(At) S RP{X(@)=knY(t) :i}ﬂ”{;:/(tht) =i X@t)=kNnY(t) =i}
k Pki
_ 2ok Pri (1 — (ag(k, i) + d3(d))At)
kaki,
_ o . aZk Prig(k, 1)
=1 dg(l) + 721‘1 P At
Therefore,
pil(AL) = n(i)At, i=j—1,j€{1,2,...,N}
= wn(i)At, i=j+1,j€{1,2,...,N}

= 1—w(At, je{l,2,...,N}

=0 otherwise
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where

no = >k Pri
(i) = da(i)
vs(i) = dQ(i)JWW

Then, p.,(t + At) satisfies the following difference equations,

py(t+AL) = iy — DAtpy_1(t) +va(y + DAy (¢) + (1 — v3 (1) Ab)p.y(t)
po(t +At) = pa(t)ra(1)At + po(t) 9)
pN(t+AL) = vi(N - DAtpN_1(t) + (1 — v3(N)At)p.n(t)

where y=1,2,...,N—1
The difference equations project forward in time and can be expressed in matrix form as
py (t + At) = Ppy(t),py,,(0) =1

where py (t) = (p.o(t),pa(t),...,p.N(t))

matrix given by

and the matrix P is the one step transition probability

1 m(DAE 0 0 0

0 1—wm()At  1(2)AL 0 0

0 (At 1-wv3(2)At  1n(3)AL 0
P=|o0 0 n(2)At 1—w3(3)At 0

0 0 0 0 L m(N)A

0 0 0 0 1 (N)AL

To ensure that P is a stochastic matrix (non-negative and column sum to 1) it is assumed that

max  v3(y)At < 1.
ooy 3(y)AL <

In this case also (0,0) is the absorbing state and hence pgo(At) = 1. and eventually population
extinction occur with probability 1 i.e lim;, po(t) = 1. Taking At — 0 the system of difference

equations (9) reduces to
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dp.o(t)

20— )
dpi/t(t) = [ (y - 1)p.y71(t) + Mg(y + 1)p,y+1 (t) _ Ma(y)p.y(t) (10)
dl)TW = m(N = Dpya(t) = ps(N)py(t)

4 Derivation of difference equation for persistence time of prey

The persistence time of the prey and predator populations may be defined as either the time when
both the population numbers are zero or the time when the prey population size is zero. Let
T be the random variable for the time until population extinction. It is to be noted that the
distribution of T" depends on the initial population size, and hence we shall denote this dependence
by T;,. Let 7., denote the expected time until extinction occur when initial population size is xg
i.e. E(Ty,) = Twy. The mean persistence time for the DTMC model satisfies the following difference

equations:

To = A (T) AL (Toq1 + AL) + Aa(2) At (1 + At) + (1 — Ag3(2)At) (7, + At) (11)

where z = 1,2,... M. This difference equations can be simplified as

A2(T)Tz—1 — A3(2) 7w + M (2)Tg1 = —1 (12)
Equation (12) can be written in the matrix form as D7 = —1, where 1 = (1,...,1)? and
) NI 0 .0 0
o AQI(Q) 7/\?(2) )\1.(2) - 0 0
0 0 0 . A(M) —Ag(M)

The solution for the mean persistence time is given by 7 = D~'1, where the inverse always ex-
ists. The matrix D is irreducibly diagonally dominant, hence nonsingular. The persistence time of
predator can also be found using similar technique. The difference equation to evaluate the persis-
tence time takes the form of a differential equation for continuous processes, where the stochastic

growth equations are described by diffusion process. For example, in a single population dynamics
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of population size N, the diffusion process is characterized by the infinitesimal mean x(N) and
infinitesimal variance o2(N). Then, starting from a given initial population size N = Ny, the mean

time to extinction, T'(Np) is the solution of the equation

1, d’r ar
57 (NO)TN(? +M(No)rNo =

—1
with the boundary conditions 7'(1) = 0 and a reflecting boundary at the maximum population size

K [24].

5 Simultaneous Extinction probability

In this section we derive the expression for the simultaneous extinction probability of prey and
predator or the joint distribution of the probability of the extinction time of the prey and predator.
Let T, (s) be the first passage time of the random variable X to the value s and Ty (s) be the first
passage time of the random variable Y to the point s. This is also known as persistent time or the
first exit time in engineering literature. Thus the event {73 (0) < T (M)} represents the event that
starting with population size z, prey goes to extinction before reaching its maximum population

size M. We define
u(z,y) = P{Tx(0) < Tp(M),T,(0) < T,(N)|X(0) = z,Y(0) = y} (13)

Therefore

way) = TaSaP{L0) < T(M).T,0) < T,(N),
XO0+At) =2+ Az, Y0+ At) =y+ Ay|X(0) =2,Y(0) =y}

(14)

From [20], it can be shown that
u(e,y) = E [u(X (AL, Y (A)[X(0) = 2,Y (0) = y]

Now,

Ou Ou 1 0%u &u
r+ Az, A = , Ar— + Ay=— + =(Az)>=— + AzAy——
W+ Ary = 80) = uleg)+ At + 85+ Han Tl s ansy Tl
10%u
ZZ 2 (Ay)?
+20y2( y)
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Taking expectation in both sides

ou ou ,0%u
2, y) = u(z, E(Az)=— + E(Ay)— IEA —
u(wy) = uwy) + EAa)Z+E(A)F + 3E(A)
Pu 10% 9
+E(AzAy) xdy + EWE(Ay)
Using the equation (1), we obtain the following equation
ou ou
0 = %@ﬂ*ﬂ%@‘dﬂ@§;+bﬂmw4dﬂw§§

@) + 0g(.) + @) — aglo.g)
| 9(@.y) +di(@)]55 —ogley) 55
2

1 0%u
+§[ag(x,y) + dQ(Z/)]WJg

Now replacing the coefficients of 3 ‘)“ and Z ‘)“ by and Y respectively, by virtue of the equation (1),

()u _@dl_,'_()udy

ordt T oy i Ve obtaln the followmg partial differential equation

and noting that,

Bu Ou u

0 = SEt Jlhule) +ag(ep) + di(e)) Sy —ogley)g 5,
1 0%u
+§[ag(x,y) + dQ(Z/)]W

Therefore the above expression can be written as

ou Pu 0%u
% = MU+%W@+%U%2+wwwww

2
~3lagle.n) + )] 5 (15)

To compute the first passage probabilities given the size of prey and predator, the above equation
is solved numerically. The numerical scheme is depicted in the Appendix. We now proceed to

develop appropriate boundary conditions for the above differential equation. We have,
u(z,y) =P{1;(0) < T;(M), T,(0) < T, (N)|X(0) = 2,Y(0) = y}

Therefore

u(0,y) = P{T,(0) < T,(M), T,(0) < T,(N)|X(0) = 0,Y(0) = y}

9(0,y) =1 (16)

9(0,y) = 1, because, from biological point of view, if there is no prey available in the system then

predator will die out. From the basic model also it is clear that, predator survives only by predating
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on the prey and no additional food source is available. Also,

u(z,0) P{T3(0) < T:(M), T, (0) < T,,(N)|X(0) = z, Y (0) = 0}
= P{T,(0) < T,(M)|X(0) = =}

= [flx) say (17)

The function f(x) is given by

: M expl—o(w)du i

f(x) = foM expl—g(w)]du where
- b(u) — d(u)

$lu) = 2 / ) el

Now

u(M,y)

P{T:(0) < T (M), T, (0) < T,(N)|X(0) = M, Y (0) = y}

= 0, because P{T,(0) <T,(M)X(0)=M}=0 (18)

u(e,N) = B{TL0) < T(M),T,(0) < T,(N)[X(0) = 2, Y (0) = N}

0, because P{T,(0) <T,(N)|Y(0)=N}=0 (19)

6 Application to predator-prey models

6.1 Logistic growth Model

For illustration we first consider the logistic model for the prey growth process. The stochastic
logistic model is a basic model, described by nonlinear birth and death rates, widely applied in

ecology and epidemiological studies [40, 33]. The deterministic logistic growth model is depicted

1 dx(t) x(t)
PO T'm (1 - 7) (20)

with the initial condition X(0) = 2. In the equation, ry, is the intrinsic growth rate and K is

by the differential equation

the carrying capacity of the environment. There exists a unique solution z(t) with lim_, 2(t) =
K. The stochastic version of the logistic model was studied by many other authors and several
approximation methods are available to study the behavior of the equilibrium distribution in terms

of moments and cumulants of the stationary distribution [8, 28, 21, 39, 41]. It is common technique
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to include demographic stochasticity in deterministic models, where the differential equation is
decomposed into birth and death rates by suitably defining the birth and death functions by ()
and dp () respectively. The different b1(z) — di(x) recovers the original differential equation. The
quantities b(z)1 At and d(x); At are the probability of birth and death for a single individual, in a
population of size x, in the time interval ¢ to ¢t + At. For example, [28, 39] considered the birth
process as bi(z) = a1z — c;x? and death process as dy(r) = agx + cax? to describe stochastic
logistic model, where a;’s and ¢;’s are defined as intrinsic growth rates. The model was studied by
[29] to model the annual catch of an invasive maskrats in eleven Dutch provinces between 1968 to
1991, and the rapid colonization of Africanized honey bees of North and South America [28, 30].
Several authors have studied the stochastic analogue of the logistic model using CTMC, DTMC
and diffusion processes (see [4] and other references therein).

To study the interactive dynamics of predator and prey, we consider the following system of

equations for the predator prey model.

W) oy (1 20) ety

“a K ] 1+aha(t)
dy(t)  ax(t)y(t)
& = “Traney WO .

where «(t) and y(t) represents the prey and predator abundance at time t. We also assume that
the prey with no predators grows logistically to its environmental capacity K, with an intrinsic
birth rate constant r. The per capita rate at which predator y(¢) captures prey z(t) is represented

by the term which gets labeled off to a at higher densities of the prey. The type II functional

response is the simplest expression that takes into account the time taken for predators to locate
and consume (handle) their prey. The type II functional response is classically associated with
specialist predators [47]. 1/h is the maximum intake rate at which predator gets saturated [18].
o is the conversion efficiency and d is the natural mortality of the predator. Before going into
the stochastic description of the system (21), we describe some basic dynamical properties of the

system, that will help us to explain the system dynamics in different parameter spaces. This model

was studied by many authors.

6.2 Theta logistic model

In most of the prey-predator systems the growth process of prey populations are assumed to follow
the logistic growth process. The logistic model assumes a linear decline in the per capita growth

rate with abundance (often called r — n curve). Both theoretical and empirical work have shown
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that, in general, for natural populations the r —n curve is concave upward [45, 12]. After studying
the laboratory fruit fly populations [17] were led to add a shape parameter ¢ heuristically to the

growth term in logistic model, such that;

1 dz(t) z(t)\?
e [1 (7> } (22)

which resulted in the theta-Ricker or theta-logistic model [17, 46]. The parameter § reflects how

abruptly growth slows as abundance interacts with resource availability [13, 45] and type of com-
petition [19]. For concave (8 < 1), nature of the growth response ideally characterizes a population
unable to recover quickly from extrinsic perturbations. In case of a convex (6 > 1) growth process
the density feed back occurs mainly above some (relatively large) threshold abundance [12, 36],
which generally happens in case of the population dynamics of large mammals [32, 36]. For this
model we have to identify the birth rate by (z) and death rate di(z). In case of 8-logistic model
many forms of birth rate and death rates are available [30]. Here we consider the form of b1 (z) and

dy(x) as follows,

9-+1

hi(z) = az—az and  di(z) = agr + cox?tl

respectively, called power law logistic model. The a; are “intrinsic rate” and ¢; are the “crowding
coefficients”. The birth rate and death rate for logistic model can be obtained from that of 8-logistic
by putting 8 = 1.

In most of the cases we consider the idealized linear interactions which is basically a valid
first order approximation of more general interaction. Due to unavoidable heterogeneity exact fit
is not expected in testing the linear model with biological data [17]. In fact the study of seven
Drosophila systems has confirmed the inadequacy of the Lotka-Volterra model [6]. The theta-logistic
model was successfully used in a predator-prey interaction of the Serengeti wildebeest population to
approximate the curvilinear density-dependent response. Different versions of the type II functional
responses were utilized to study the evidence of group formation in the prey and predator [14]. We

consider the following differential equation to describe the interactive predator-prey dynamics.

O oo (2] -
dy(t) _ az(t)y(t)
a . “1r ahz(t) dy(®) (23)
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6.3 Stability analysis of equilibrium

d2lt) _ 5 and ¥ = 0 we get the interior equilibrium point as

Equating =5~ e

. d
~ ala—dh)

o= 21— r '
vo- a(a— dh) K
The jacobian matrix at (z*,y*) is given by
h h z*\f
r@-er 9 ®)) -8
r(oo— dh) (17 <£>9) 0

Now from Routh-Hurwitz’s criteria the interior equilibrium will be stable if tr(.J) < 0 and det(.J) >

J =

0. So in this case the interior equilibrium point will be locally asymptotically stable if

[(Zl - (9+ %) (;)1 <0 (24)

which can be simplified to obtain

dh 0 < d
af + dh ak(o — dh)
The other equilibrium points are (K, 0) and (0,0). The jacobian matrix for (0,0) is

r 0

J|(o‘o> = 0 —d

Now for this det(J) = —rd < 0. So (0, 0) is always unstable. Again for boundary equilibrium (X, 0)

the jacobian matrix is

aK
Jl _ —r0 T 1+haK
(K,0) aal
0 1+haK d
It is easy to show that the boundary equilibrium point (K, 0) will be stable if % < d. If we

put & = 1, then the stability conditions for the equilibrium points of model (21) follows directly.

To study the stochastic dynamics, we have chosen the parameter values as r = 1, K = 20,
a=1,H =1,0=0.8in eqn. (23). Figure 3 shows the stationary distribution of prey and predator
populations. The effect of parameters 8, K and h on the probability of extinction. If the value of K
is increased then the probability of extinction decreases. A similar changes in extinction probability

is found with respect to the handling time as well.
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We have evaluated the marginal stationary distribution following the method of [37] for different
choices of the model parameters. It is observed from figure 1(a) that, as the carrying capacity of
prey increases, probability of extinction decreases. This means that, the stability of the system
increases under the stochastic set up, which is contrary to the conclusion obtained by [43] under
the deterministic model set up. [43] showed that, there is a critical threshold for K at which the
equilibrium becomes unstable through a Hopf bifurcation and stable limit cycle emerges. However,
under the stochastic set up, the probability of extinction tends to diminish for very large K and
does not generate such bifurcation phenomena. Nature of probability of extinction with varying 6

is depicted in figure 1(c).

6.4 Quasi-stationary

An important aspect of the dynamical system is the quasi stationarity. If the deterministic rate
equation has at least one stable fixed point,the system approaches a quasi stationary state with a
time independent distribution; this is called the Quasi stationary Distribution [8, 35]. In case of
single species model the quasi stationary distribution is obtained from the probability p.(n,t), that
of finding n individuals at time ¢, conditioned on the fact that fact that extinction has not occurred

yet:

nine) = 0 (29)

In the present analysis we obtain the quasi stationary distribution for marginal probability distri-
bution. In case of prey population the quasi stationary distribution resembles normal distribution
(Fig. 2(a)). When it comes to predator population the pdf of quasi stationary distribution sharply

decline with increase in predator population (Fig. 2(b)).

6.5 Allee growth dynamics

‘We have studied the following Allee effect model in this manuscript.

dx T azxy

oo p@-A)(1-2) - 2
dt ra(z = 4) ( K) 1+ ahz (26)
dy aazy

- - /g 2
dt 1+ ahx &y 27)

where, z:(t) and y(t) stands for population densities of prey and predator over time ¢. r is the intrinsic
growth rate and the Allee effect is characterized by A. Allee effect is strong or weak that depends on

where A > 0 or A < 0 respectively. There are several mathematical models
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are available to describe Allee effect [10]. The other parameters are already explained in the
previous sections. In the model with Allee effect, the stochastic effects increase the probability of
extinction above the Allee threshold, but decrease the probability of extinction below the critical
threshold [11] and the stationary distribution of the population abundance is characterizes by a
bimodal distribution [44]. [2] studied how stochastic variability coupled with an Allee effect impact
species invasion success in a multi-patch system. We first study the linear stability analysis of
the equilibrium points to understand basic dynamical features of the deterministic model. Let,

File,y) =ra(e — A) (1- £) — 28 and fo(r,y) = 22 — dy.

1+ahz 1+ahz
df1 z z r ay
o = e (-g) e (- f) - e iy
dfi ax
oy l+aha
of _  oay
dr (1 +ahw)?
% _ oar
dy 1+ ahx

The equilibrium points of the system 26 is (0, 0), (4,0), (X,0) and the interior equilibrium is given
by (z*,y*) where

. d
o= a(o — dh) (28)

and

N ar
y = | —
Y K (o — dh)3
At the boundary equilibria (0,0), the jacobian matrix takes the form

> (d— Aa(a — dh)) (Ka(a — dh) — d) (29)

—ra 0

J

(0,0) 0 —d

with eigenvalues A; = —rd and A2 = —d < 0. Hence (0,0) is locally asymptotically stable. At the

boundary equilibrium point (A4, 0), the jacobian matrix takes the form

A aA
7 _ rA (1 - ?) T TtahA
|(A‘O) = wad
0 Trana 4
with eigenvalues \; = rA (1 — %) >0 and Ay = % —d. So (A,0) is unstable if 11‘;;% > d and
a saddle if % < d. The jacobian matrix at (X, 0) is of the form
Jl | rE A e
(K,0) — aall
0 1+ahK d
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with eigenvalues Ay = —r(K — A) < 0 (since K > A) and A = 1iahK d. So (K,0) is locally
asymptotically stable if 11%} < d. At the interior equilibria (z*,y*), the jacobian matrix takes
the form,

R = () i
where

ok * " * " * (% (ly*
¥, = p* — A —— ) +rx — =) —tKz*(z* - A) - ——————
g(z",y") r(z )(1 K> e (1 K> K (@ ) (14 aha*)? (30)

Now for interior equilibrium —d = 0. The eigenvalues are given by the equation, A% —

aaz*
1+ahx*
OL(ZQT*’I* 2 ok ok

Ag(z*, %) + W The sufficient condition for stability is, g(z*,y*) < 0 and % > 0. But
2
aa’e? y)s is always greater than 0. So the sufficient condition reduces to g(z*,y*) < 0. where g is

(14+ahz*
given in (30).
To study the quasi-stationary distribution of the population size, we have considered the birth-

death process with birth and death rates are defined as,

b(z) = %—;K)xz <1*A1K>and (31)
d(z) = %AT (32)

We have also shown the effect of different relevant parameters associated with the model.

7 Result and Discussion

In this paper we develop the method to find the probability of reaching the extinction equilibrium
(0,0) before reaching to any other coexisting states of both of the population size. This probability
denotes the probability of simultaneous extinction when the size of the coexisting population is
very high. To validate the theoretical aspect we consider the prey-predator dynamical system
where the growth rate of prey population follows 6-logistic and Allee mechanism and evaluate the
simultaneous extinction probability of prey and predator. The method we used here can also be

used to other dynamical system such as SIS model.
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Abstract

This paper aims to study the propagation of SH-waves in a fibre-reinforced medium over a
heterogeneous orthotropic half-space under initial stress. The lower half-space is caused by con-
sideration of exponential variation in initial stress, rigidity and shear moduli. The closed form
of dispersion equation has been obtained for SH-waves in terms of Whittaker’s function which
is further expanded asymptotically, retaining the terms upto second degree. As a special case
when the layer and the half-space both are homogeneous our computed equation coincides with
the standard equation of Love wave. Numerical results analyzing the dispersion equation are
discussed and presented by number of graphs. This study shows that the reinforcement as well

as heterogeneity, initial stress parameters have remarkable effect on the propagation of SH-waves.

Keywords: SH-waves, initial stress, heterogeneity, fibre-reinforced medium, orthotropic,

phase velocity.

1 Introduction

When an earthquake occurs, the shockwaves of released energy which shake the Earth and
temporarily turn soft deposits are called seismic waves. These are waves of energy that travel
at different speeds when they pass through different types of material and move similarly to
other types of waves, like sound waves, light waves and water waves. These waves contain
vital information about the internal structure of the Earth. Because the speed of seismic waves

depends on the material properties, one can use the travel-time of seismic waves to map change
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in density with depth, and show that the Earth is composed of several layers. There are two
basic types of seismic waves body waves and surface waves. Surface waves are similar in nature

to water waves and travel just under the Earth’s surface.

Since our planet is a spherical body having finite dimension and the elastic waves generated
must receive the effect of the boundaries. Naturally, this concept leads us to study surface waves.
The study of surface waves in elastic media is very important due to their devastating damage
capabilities during earthquake and for homogeneous, non-homogeneous and layered media it has
been central interest to theoretical seismologists in recent time. One type of surface waves is
Love wave that may be available in non-homogeneous Earth. Love waves are transverse waves
that vibrate the ground in the horizontal direction perpendicular to the direction that the waves
are travelling. Quite a good amount of information about the propagation of seismic waves
is contained in the well-known book by Ewing et al. (1957). A large number of papers have
been published in different journals after publishing this book. Chattopadhyay et al. (2011)
investigated the propagation of torsional surface waves in an inhomogeneous layer over an inho-
mogeneous half-space. Georgiadis et al. (2000) showed the existence of torsional surface waves
in a gradient-elastic half space. Dey et al. (2004) presented a study of Love wave propagation
in an elastic layer with void pores. Love-type surface waves in homogeneous micropolar elastic
media was studied by Midya (2004). Davini et al. (2008) studied the propagation of torsional
waves in a thin rectangular domain using asymptotic approach. Gupta et al. (2012) pointed that
in a homogeneous layer over a heterogeneous half-space torsional waves do exist. Ghorai and
Tiwary (2014) found that in-homogeneity of rigidity and density of the medium influences the
velocity of torsional surface wave. Sethi et al. (2012) made an attempt to investigate the effect
of viscoelastic material on the phase velocity of torsional wave. Manna et al. (2013) discussed
Love wave propagation in a piezoelectric layer lying over an inhomogeneous elastic half-space.
The commendable works by Islam et al. (2014), Abd-Alla et al. (2013), Chattopadhyay et al.

(2013) in the study of seismic waves may be cited.

The study of wave propagation in fibre-reinforced medium plays an important role in ge-
omechanics and civil engineering. The characteristic property of a fibre-reinforced material is
that its components, i.e., concrete and steel act as a single anisotropic unit as long as they
remain in elastic condition, i.e., the components are bound together so that there are no relative
displacement between them. There are some hard and soft rocks inside the Earth that show
reinforced property. There are also artificial fibre-reinforced composites used to minimize the
damage due to earthquake. Many papers have been publishes on the propagation of seismic
waves in fibre-reinforced medium. Pradhan et al. (2003) considered the influence of anisotropy
on the Love waves in self-reinforced layer lying over an elastic non-homogeneous half-space. The
effects of reinforcement, gravity and porosity on the propagation of Love waves were discussed by
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Chattaraj and Samal (2013). Dhua et al. (2013) observed that the presence of reinforcement in
the layer increases the phase velocity of tosrional wave significantly. Kundu et al. (2014) investi-
gated Love waves in a fibre-reinforced layered medium lying over an initially stressed orthotropic
half-space. Vishwakarma (2014) showed the effect of reinforced and viscoelastic parameters on
torsional wave propagation.

The earth is considered as an initially stressed body as layered structured. These initial
stresses exist due to various reasons viz., temperature, atmospheric pressure, gravity variation,
slow process of creep etc. The presence of initial stress has remarkable effect on the phase
velocity of surface wave. Gupta et al. (2013) discussed the propagation of torsional surface
waves in an inhomogeneous layer over an initially stressed inhomogeneous half-space. Kepceler
(2010) examined and found the existence of torsional wave dispersion relations in a pre-stressed
bi-material compounded cylinder with an imperfect interface. Ahmed and Abo-Dahab (2010)
showed the existence of Love waves in an orthotropic Granular layer under initial stress overlying
a semi-infinite Granular medium. Abd-Alla and Ahmed (1999) investigated Love waves in a non-
homogeneous orthotropic elastic layer under changeable initial stress. Sethi et al. (2011) studied
the effect of non-homogeneity of the orthotropic media as well as the changeable initial stress on
the dispersion equation of Love waves. References can be made to Kundu et al. (2014), Ozturk
and Akbarov (2009), Chattaraj et al. (2011) for their excellent contributions in investigating
seismic waves in various mediums under various circumstances.

So far it has been found that the propagation of SH-waves in a fibre-reinforced layer over a
heterogeneous orthotropic half-space has remained un-attempted. So in the present paper, the
effects of reinforcement, initial stress and heterogeneity parameter are shown on the propagation
of SH-waves. The crust region of our planet is composed of various heterogeneous layers with
different geological parameters. For the present study the heterogeneity in the lower half-space
is caused by exponential variation in initial stress, density and shear moduli. The dispersion
equation of SH-waves under these conditions has been derived. The study reveals that the
reinforcement as well as heterogeneity, initial stress have remarkable effect on the propagation
of SH-waves. The graphical representation has shown the relation between dimensionless phase

velocity and wave number.
2 Formulation of the problem

We consider the positive z-axis vertically downwards and the z-axis along the direction of
wave propagation. Let H be the thickness of the fibre-reinforced layer lying over a heterogeneous

orthotropic half-space. The free surface of the reinforced layer is assumed to be traction free.
The heterogeneity in the half-space is considered in initial stress, density and shear moduli. The
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following variations for the half-space are taken into account:

z=-H
Fibre-Reinforced
Anisotropic Layer | z7
z=0
Heterogeneous P=FRe™
== Orthotropic p=pe’ = P
==  Half-Space 0 =ae”’
Figure 1: Geometry of the problem
P = Bye**,
p= poe, 21)
Qi = a;e’?,

where P is initial stress, p is density, Q; are shear moduli, o, 8, v are constants having dimension
that is inverse of length.

3 Solution for fibre-reinforced layer

The constitutive equation for a transversely isotropic linear elastic material with preferred di-
rection @ (Spencer, 1972) is

oij = Aeprbij + 2urei; + oagamermdi; + aiajey) +
2(pr, — pr)(aarer; + ajarer;) + Blakamermaia;) (3.1)

where o;; are components of stress; e;; are the infinitesimal strain components; 3;; is Kronecker
delta; a; = (a1, a2, a3) are the direction cosines of @ with respect to Cartesian coordinate system
such that a? 4+ a3 + a? = 1; pr and py, are transverse and longitudinal elastic shear modulus
respectively; X is elastic parameter; o, 5, s, — pr are reinforced anisotropic elastic parameters;
u; are the components of displacement vector. We assume the direction of fibre along x and
z-axis, L.e., d = d(a1,0,a3).

Using the conventional SH-wave conditions u; = ug = 0,u2 = v(z, 2, t) in equation (3.1), we get
the non-zero stress components as

12 = pr {P@ +R@

ov ov
p Bz] ,023 = pr {Q& + R—} (3.2)

oz
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where

_ BL 2
P =1+ (& — 1)},

Q=1+ (4 - 1)aj, (3.3)
R= (% - 1)(11(],3.

The equation of motion for SH-waves in a fibre reinforced layer is

60'12 60'22 60'23 8211
—_— — =p=—. 3.4
o oy o For (34)
With the help of (3.2) and (3.3), the equation of motion (3.4), takes the form
8211 8 v, 8211 p 0%v
= ——. 3.5
92 T Q 81:(92 pr Ot? (3.5)
For the wave changing harmonically, we assume
v= V(z)e"’k(””fcw, (3.6)

where k is wave number, w(= kc)=circular frequency, c is the speed of simple harmonic waves.
On substituting (3.6) into (3.5), one gets

A% av
Q= +2Rik— + k(5 —P )V =0, (3.7)
dz? dz 2
where ¢y = ,/£L is shear wave velocity in the reinforced layer.

P
The solution of (3.7) may be taken as

V(Z) _ Dle—ikglz _,'_1)26—%(%7

R+,/R2+Q(5—P R—/R2+Q(S—-P
5 Yyt (5-7) . +Q(5-7) 55

where

Q ’ Q

Thus the solution for the upper reinforced layer is

v =vo(say) = (Dle’ikﬁz + Dze’ik@Z) elklo—ct) (3.9)

4 Solution for Orthotropic Half-Space

The equations of motion without body force under initial stress (717 = —P) are given by
. o
G G g e p(Ges — Ge) =y,
a a a dwzy — 0
m | G g O p(dus) o (4.1)
M+%+&u P(am)*/’%gﬁ
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where 7;; are the incremental stress components; u, v, w are the components of displacement

vector ; wg, wy, w, are the components of rotational vector given by

o L(B0 O (o ey (o o )
T2\ 0y 0z " Te\e: )T 2\ o oy )" ’

The stress-strain relations are

711 = Br1€ze + Praeyy + Pize.z,
Too = P21600 + Bazeyy + Baze..,
T33 = B31€2z + Bazeyy + Baze.,

To3 = 2Q1€yz,T31 = 2Q2€.2, T12 = 2Q3€4y.

(4.3)

In above §;; are the incremental normal elastic coefficients and @; are the shear moduli.

Now the strain-displacement relations are given by

it oy Ao owy o 1(ou o »
Gy = 3 Oy = Ox * 2= 5\ Bz Oy 1 G =g Bz+% ' (.

For the propagation of SH-waves along z-direction having the displacement of particles along

y-direction, we have
u=0,w=0,v=0(z,z1t). (4.5)

Using the equations (4.2)-(4.5),the dynamical equation of motion which is not automatically

satisfied is

v P\ 0%  dQ dv %
Ql@*(%*ﬂw*%&*ﬁm (4.6)

We assume the harmonic solution of equation (4.6) as
v =V(z)ekle=et) (4.7)
where V' (z) satisfies the following equation

>V d@QdVv P
Q1ﬁ+%a+k2 (pCQ-‘rE*Qg)V:O. (4.8)

In above equation, k is the angular wave number and w(= kc) is angular frequency.

Substituting V = 7‘8-1, above equation reduces to

A% N
dz?

1 (@)2 1 d2Q1+k2(P_02+ L ,@) Vi=o. (4.9)

12\ dz ) 2Q, d? Q. 20, Qi
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Using equation (2.1), equation (4.9) gives

d2V1 9 dy + doz ’YQ (1/3

—_— - =111 =0, 4.10
=z " T+~yz 42 df| ' 7 (4.10)
where
3z R
d = 5+ —,
1 Z + 2,
2
C Py
dy = p—= —
2 50% + 042(1,1 )
|} . .
c = —L = Characteristic velocity of transverse waves for lower heterogeneous orthotropic half-space.
£0

Using dimensionless parameters n = w and y1 = %?- + 412;; — d—j in equation (4.10), one
gets
% 1 R
— ——+—=|V1 =0, 4.11
dn2+{4+n}l ' (1)

k(diy—da)
where R = .
Ty

Solution of (4.11) satisfying the condition V(z) — 0 as z — o0, i.e., Vi() = 0 as n — oo may
be taken as

Vi=AsWg (),

where Aj is arbitrary constant and Wp %(17) is Whittaker function (Whittaker and Watson,
1990).

Hence the solution of half-space may be written as

D3WR 1("7 .
v = vy (say) = ——gz2—et@e, (4.12)
e 2

A
where D3 = 25,
3 za

5 Boundary conditions

The appropriate boundary conditions are as follows:

(i) Stress of layer vanishes at z = —H, i.e.,

J93 = 0. (51)
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(ii) Displacement and stress components are continuous at z = 0, i.e.,
v = U1 (5.2)

and 093 = T23 (53)

Using the above boundary conditions in equations (3.9) and (4.12), we obtained the following
three equations

Di(R — Q61)e ™ H 4 Dy(R — Q&)™ 2 =, (5.4)
2k
Dy+ Dy — DsWp 1 { 11 (1 ""“YZ)} =0, (5.5)
2=0
' ' (1/1 o WR‘% {271k ’$+’YZ) }
Dl(R — QQ)Z/C + DQ(R — QCQ)Z/C — Dgz & e—:('zi =0. (5.6)

2=0
Eliminating D1, D2 and D3 from equations (5.4)-(5.6) and expanding the Whittaker function

upto linear terms, the dispersion equation for SH-waves in fibre reinforced medium is obtained

as
2m1 A
, 71*5'%*—'2%:
tan [% R2+Q(§—P> I B e il (5.7)
0 R e (s - P)
0
where A =

Equation (5.7) gives the dispersion equation of SH-waves in a fibre-reinforced layer over a het-

erogeneous orthotropic half-space.

6 Particular Cases

Case I: If a; = 1, as = a3 =0, then P — ﬁ, @ — 1 and R — 0, the equation (5.7) reduces to
214
2 1+L
tan —2
€% HT T \/—
wr

This is the dispersion equation of SH-waves in the presence of heterogeneous orthotropic half-
space with initial stress .

Case II: If pof, = pp = po, i.e., the upper layer is isotropic with rigidity g, then by equation
(5.7) we get

1+ ”;

-
o /50771

} = % -
-1 = :
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which is the dispersion equation of SH-waves in an isotropic homogeneous layer lying over a
heterogeneous orthotropic half-space under initial stress.

Case IIT: When the half-space is homogeneous, i.e., @ — 0, § — 0 and v — 0, the dispersion
equation (5.7) becomes

A 2
c P
-z

tan[% R2+Q(§P>}—a—?‘;
A NN e

Case IV: In this case, the half-space is isotropic, i.e., aj = a§ = p1, homogeneous and free

2|8

from initial compression, then the dispersive equation (5.7) takes the form

2
2 ’ 17%-_;
tan [%I R2+Q(C—2P>} e S S S
C
O e

which is the dispersion equation in a fibre-reinforced layer over an isotropic homogeneous half-
space without initial stress.
Case V: If u;, = pp = po, i.e., the upper layer is isotropic with rigidity po and the lower

half-space is homogeneous, isotropic, i.e., i = aj = p1 and free from initial stress, equation

(5.7) reduces to
tan |kH f71 :ﬂz—“,
% mo fS 1
0

This is the well known Love wave equation (Love, 1927) in a homogeneous isotropic layer over
a homogeneous isotropic half-space.
7 Numerical results and discussion

For numerical discussion we used the following relevant parameters in fibre-reinforced layer

and orthotropic half-space.

(i) For fibre-rein-forced layer (Hool and Kinne, 1924)
pr = 5.66 x 10°N/m?, pr = 2.46 x 10°N/m?, p = 7800kg/m3

(if) For the orthotropic half-space (Gubbins, 1990)
a} =5.82 x 1010N/m?, a} = 3.99 x 101°N/m?, p = 4500kg/m3
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To show the effect of different heterogeneity parameters, initial stress and reinforcement on
nature of wave motion we have plotted dimensionless phase velocity % against dimensionless
wave number kH on the propagation of SH-waves in fibre-reinforced medium. The numerical
calculations of phase velocities have been computed from equation (5.7) for different values of
these parameters. The variations are shown in Figures 2 to 8. In all these we have noticed that

the phase velocity decreases with the increase in dimensionless wave number.

Figure 2 gives the dispersion curves of SH-waves as function of dimensionless wave number
in fibre-reinforced medium over a heterogeneous orthotropic half-space. Dispersion curves are
plotted for different values of heterogeneity parameter & associated with initial stress. The value
of £ for curve no.1, no.2, no.3 and no.4 has been taken as 0.1, 0.2, 0.3 and 0.4 respectively. From
these curves it can be realized that phase velocity increases with the decrease of 7. The curves
becomes closer to each other when the value of # decreases. So the heterogeneity parameter %
has much dominance at large values.

Figure 3 manifests the effect of heterogeneity parameter ég associated with density on the
phase velocity of SH-waves. In this figure the value of é has been taken as 0.2, 0.4, 0.6 and
0.8 for curve no.1, no.2, no.3 and no.4 respectively. From this figure it has been observed that
the increasing value of heterogeneity parameter decreases the phase velocity for a particular
frequency. Also the curves are little far apart from each other at higher phase velocity, i.e., the
heterogeneity parameter Lé has much dominant effect at higher phase velocity and lower wave

number.

Figure 4 represents the effect of heterogeneity parameter # associated with shear moduli on
the phase velocity of SH-waves. The value of  for curve no.1, no.2, no.3 and no.4 has been
considered as 0.05, 0.10, 0.15 and 0.20 respectively. These curves show that the phase velocity of
SH-waves decreases with the increase of #. Also it has negligible effect for the higher magnitude.

Figure 5 gives a variation of velocity of SH-waves for the variation of compressive initial
P
and no.4, the value of zfdofl has been taken as 0.2, 0.4, 0.6 and 0.8 respectively. It is observed

stress of the half-space in the presence of reinforced parameters. For curve no.1, no.2, no.3

that the phase velocity of SH-waves increases with an increase in the compressive initial stress.
It has also been noticed that dominant effect on phase velocity is visible at higher magnitude of
L)
2(1’1 :

In Figure 6, an attempt has been made to study the effect of initial stress parameter in the
half-space when the reinforced parameters are neglected in the upper layer, i.e., a; = ag = 0.
The value of initial stress parameter 213(1—0,1 for curve no.1, no.2, no.3 and no.4, has been taken as 0.2,

0.4, 0.6 and 0.8 respectively. The curves of this figure also show that the phase velocity of SH-

waves increases with the increase of initial stress parameter P{;U, in the absence of reinforcement
ay

of the upper layer. Here also, the initial stress parameter has much dominance at large values.
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Figure 7 gives the dispersion curves for different values of reinforced parameters in the
presence of initial stress of the half-space. The values of a? and a3 for curve no.1, no.2, no.3 and
no.4 have been taken as 0.25, 0.30, 0.35, 0.40 and 0.75, 0.70, 0.65, 0.60 respectively. The figure
shows that the effect of reinforcement is very prominent on the propagation of SH-waves. The
phase velocity increases with the decrease of a? and increase of a3 at a particular frequency.

In Figure 8, the effect of reinforced parameters a? and ag in the absence of initial stress of
the half-space on SH-wave propagation has been shown. For curve no.l, no.2, no.3 and no.4,
the values of a? and ag have been taken as 0.25, 0.30, 0.35, 0.40 and 0.75, 0.70, 0.65, 0.60
respectively. [t shows that such parameters have remarkable effect on SH-wave propagation.
This figure confirms that the phase velocity increases with the decrease of a? and increase of ag

at a particular wave number.

— L. ovk=0.1
—2. a/k=0.2 |4
—3. o/k=0.3

2.3F

3.2 3.4 3.6 3.8 4 42 44 46
kH —>

Figure 2: Dimensionless phase velocity as function of dimensionless wave number of SH-waves
for different values of £ and for é =0.1,%=0.6, a? =04, ag = 0.6, %‘r =0.6.
‘1
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Figure 3: Dimensionless phase velocity as function of dimensionless wave number of SH-waves

34

3.6

38

44

for different values of ég and for £ = 0.1, % = 0.6, a% =04, a% = 0.6, %r =0.6.
o d ’ 31
—— 1. yk=0.05
3.3k —2.y/k=0.10 |
——3.vk=0.15
320 ——4.yk=0.20 |{
T 3.1F
©7 3¢
S
29
2.8+
2.7F
26 . . . . . .
34 3.6 3.8 4 4.2 4.4 4.6 4.8
kH—>

Figure 4: Dimensionless phase velocity as function of dimensionless wave number of SH-waves
for different values of ¥ and for § = 0.1, é =06, a? =0.4, a2 = 0.6, 2 —o.6.
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kH—>

Figure 5: Dimensionless phase velocity as function of dimensionless wave number of SH-waves
for different values of %— and for £ = 0.1, i—g =01,%=04 a? = 0.4, a3 = 0.6.
U : g :

33 ——1.Py2a,=02|
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3.1 E
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2
29} 1 .
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27 . . . . . . . .
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Figure 6: Dimensionless phase velocity as function of dimensionless wave number of SH-waves
for different values of %— and for £ = 0.1, i—g =01,%=040a1=0a3=0.
U : g :
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Figure 7: Dimensionless phase velocity as function of dimensionless wave number of SH-waves

for different values of a% and a% and for £ = 0.1, ég =0.1, % =04, 2%1- =0.6.
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Figure 8: Dimensionless phase velocity as function of dimensionless wave number of SH-waves

for different values of a? and a% and for ¢ = 0.1, é =0.1,7 =04, 2%1- =0.
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8 Conclusions

An analytic approach is used to investigate the propagation of SH-waves in a fibre-reinforced
medium over a heterogeneous orthotropic half-space under initial stress. The method of sepa-
ration of variables is applied to find the displacements in the media and generalized dispersion
relation. Some special cases of interest have been deducted from the dispersion equation. When
the reinforcement of the upper layer and the initial stress, orthotropy, heterogeneity in the half-
space are neglected, the dispersion equation obtained is in agreement with the standard equation
of SH-waves. For graphical representation, MATLAB software has been used to generalize the
results. From the above discussions we may conclude that

(i) Dimensionless phase velocity + of SH-waves increases with the decreases of non-dimensional

wave number kH in all the figures.

(ii) An increase in heterogeneity associated with initial stress, density and shear moduli de-
creases the phase velocity of SH-waves.

(iil) The effect of initial stress on the phase velocity of SH-waves is significant. In the presence
or absence of reinforcement of the layer, the phase velocity of SH-waves increases when

the initial stress parameter increases.

(iv) The reinforced parameters have also pronounced influence on the propagation of SH-waves.

The phase velocity of SH-waves increases with the decrease of a? and increase of a3.

There are some hard and soft rocks inside the Earth which show reinforced property and
the reinforced materials are basic construction materials, so the wave propagation in reinforced
medium plays an important role in civil engineering.
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VALEDICTORY ADDRESS
A.B.Raha

Let me begin by thanking the Organizers of the 2-day
Seminar,and in particular, Bhargav maharaj, the Vice-
Principal of The Ramakrishna Mission Vidyamandira,
for inviting me to deliver the Valedictory address. I have
been in a real predicament doubting my competence for
this task. Being a practitioner in Pure Mathematics [ am
now required to sketch a brief idea of application of
modern mathematics. The situation is akin to one when a
classical musician is asked to sing popular film songs.
Let me strive to do as much justice as possible to this
occasion.

Let me start my talk by quoting a famous saying of Paul
Richard Halmos : The only way to learn mathematics is
to do mathematics.

In his famous as well as sensational monograph “ A
Mathematician’s Apology “ Godfrey Harold Hardy(more
popularly G.H.Hardy ),the British mathematical icon of
the 20™ century, is full of praise for Pure Mathematics
for its own sake,its sheer beauty and its being divorced
of application. According to him Applied mathematics
which is useful in construction of bridges or in warfare is
“Intolerably dull” and thus worthless. He writes “A
mathematician, like a painter or a poet ,is a maker of
patterns. If his patterns are more permanent than theirs, it

165



is because they are made with ideas... The
mathematician’s patterns , like the painter’s or poet’s,
must be beautiful; the ideas, like the colours or the
words, must fit together in a harmonious way. Beauty is
the first test; there is no permanent place in the world for

ugly.”

German mathematician Jacobi shared a similar sentiment
when he expressed “ It is true that Fourier has the
opinion that the principal object of mathematics is the
public utility and the explanation of natural phenomena;
but a scientist like him ought to know that the unique
object of science is the honour of the human spirit and
on this basis a question of the theory of numbers is worth
as much as a question about planetary system.”

Exactly an opposite view is held by the mathematician
Cedric Villani, the director of the Institute of Henri
Poincare and a recipient of Fields Medal in 2010 who
recently visited India. According to him Hardy’s was a
“monstrous way of Thinking”.One should not
underestimate Applied Mathematics or application of
mathematics. Some of Hardy’s work in pure
mathematics later turned out to be very useful in
Genetics (e.g., Hardy-Weinberg Law) and several other,
apparently  non-mathematical, = branches. Hardy’s
favourite Number Theory yielded extremely useful and
non-trivial applications to this date. Because of all these
aspects Prof.Villani refuses to distinguish between Pure
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and Applied mathematics. He, indeed, feels that Applied
mathematics together with application of Pure
Mathematics have added further glamour to Pure
Mathematics. Another strong and appropriate view in
favour of application of mathematics by a famous Polish
mathematician S.M.Ulam who played a very important
role in the Hydrogen Bomb project of U.S.A. asserts “ It
seems to me the impact and role of the electronic
computer will significantly affect pure mathematics also,
just as it has already done so in the mathematical
sciences , principally physics, astronomy and
chemistry”.

In order to highlight the application of Pure mathematics
let me present the following two tell-tale views as last
two in the present list: Alexey Sosinsky in 1991 writes
the notion of a ‘group’, viewed only 30 years ago as the
epitome of sophistication, is today one of the
mathematical concepts most widely used in physics,
chemistry, biochemistry and mathematics itself.”

A Mathematical Physicist echoes “ All modern theories
of nuclear and electromagnetic interactions are based on
Group theory”.

Turning towards Pure Mathematics let me first present
an “Old wine in a new bottle” as an application of
modern method to prove an old classical Theorem. Here
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is a smart cryptique proof of the celebrated result of
Euclid: The set of prime numbers is infinite.

“If the set P of primes is finite let M = [[, p. Then

(|:1+ M)

0 a::l_[?, [.';i,n'; ) = l_[?,sm

contradiction ! “

)=0. A

Note that M is divisible by each prime p. Hence

in (%) = sin (L:Y + Sj = sing .As 1+2M > M

> p for every prime p €P , 2M+1 is a composite

number and consequently divisible by some prime py €

P. Then the term on the R.H.S involving po is 0.

I conclude my talk with the following problem in
Topology. It is a well-known theorem of Alexandroff
and Hausdorff (1929) that every compact metric space is
a continuous image of the Cantor Ternary set. Now
question  arises : which topological spaces are
continuous images of the Cantor set? Clearly such a
space must be compact and has cardinality = c= the

cardinality of the continuum. In the case of Hausdorff
spaces it can be shown that a continuous image of the
Cantor set has to be compact and metrizable. Hence the
problem remains in the case of non-Hausdorff spaces :
what are the non-Hausdorff spaces that are continuous
images of the Cantor set ?
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As an illustration it can be shown that R with cofinite
topology is a non-Hausdorff space which is a continuous
image of the Cantor set.

With these words I stop. I don’t know whether I could do
justice to what has been expected of me. In any case let
me thank the audience for the patient hearing paid to me.
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